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FOREWORD

Stanford University and the University of California at Los Angeles
record in this Final Report, the results of a nine-months study on the
application of a Drag-Free Satellite to geodesy. The work was performed
under NASA Grant NAS-12-695 which was awarded in respohse to our proposal
[Refs. 1 and 2] "To Prepare a Preliminary Design of a Drag-Free Satellite
and Study Its Application To Geodesy," and the Addendum dated January,
1968. The work reported is principally in two areas: the first is the
feasibility of making geophysical measurements which are not possible
with conventional satellites, and the second area, preliminary design
work on attitude and translation-control systems for spinning vehicle
and possible coupling of attitude and translation control for gravity
stabilized vehicles.

A Drag-Free Satellite control reference is an unsupported proof mass
shielded from all external surface forces by the satellite. Since anly
gravitational forces act on the proof mass, it follows a purely gravita-
tional orbit. A control system in a satellite senses the relative posi-
tion of the satellite with respect to the proof mass and actuates reaction
jets forcing the satellite to follow the proof mass. The satellite there-
fore also follows a purely gravitational orbit [Refs. 3 and 4], This
concept has been developed to 2 high degree at Stanford under NASA Grant
NsG 582 and was independently proposed at UCLA for aeronomy studies in
1962 [Ref. 5]. There are two principal advantages of a Drag-Free Satel-
iite for geodesy, Tirst, the satellitc cancels surface forces which might
mask the small variations in the gravitational field; hence, it protects
the long period perturbations due to weak effects from distortion and
allows them to become large enough to be measured. Secondly, the perigee
of the satellite can be made lower without introducing additional distur-
bances to the satellite ephemeris, It is possible, therefore, to enhance
the effect of higher gravitational harmonics.

Two types of geodesy information have been considered in detail.

The first is an improved analytical model of ‘the effect of tidal forces on
the earth, Latitude and longitude dependence of the elastic deformation
and energy dissipation have been included. From this mathematical model,
it is hoped to determine accurately, the tidal interaction of the earth,
moon, and sun. Some fixed tesseral harmonics of the earth's gravitational
field have been measured by conventional satellites., A large number of
tesseral harmonics (72 pairs) were selected as being uncertain and of
interest. Through careful analysis, four orbits have been selected in
which a Drag-Free Satellite can identify 69 of these 72 pairs of tesseral
harmonics., The necessary theory for this evaluation has been reviewed and
the analysis leading to the selections of these four orbits is presented
in detail.

In the design of the Drag-Free Satellite, there are two different
types of performances that concern the designer. The control system
which thrusts the satellite so that it follows the proof mass must be
efficient in the utilization of propellant. Low propellant expenditure
and tight control are the most important measures of control performance.

-1-



A very different type of performance is discussed in evaluating how closely
one achieves a purely gravitational orbit. The proof mass may be perturbed
by a sensor, gradients in local magnetic field, mass attraction from the
satellite, and many other phenomena. Mass attraction of the satellite

on the proof mass is the largest of these very small forces which prevent
the orbit from being purely gravitational. When the average value of these
disturbances are along-track, they produce significant perturbations.

To reduce this effect by several orders of magnitude, the satellite may

be spun, Therefore, a thorough preliminary design study was made on a
spinning vehicie, attitude and translation control system for a drag-free
operation to establish the feasibility of achieving this significant im-
provement of performance in case it is needed. The importance of adding

a Drag-Free Satellite control system to an existing satellite was also
recognized and hence, feasibility studies were performed to insure that
special coupling effects would not degrade the translation control system
performance. These are presented herewith in detail.

(N REFERENCES

1. '"Proposal To Prepare A Preliminary Design of a Drag-Free Satellite And
Study Its Application To Geodesy,'" Stanford University, submitted
to NASA, Nov 1967,

2, Addendum to the above, Jan 1968,

3. '"Proposal to Develop and Operate a Sustaining Earth Satellite in Two
Orbital Flights," submitted to NASA by Stanford University, Feb,
1966,

4, Lange, Benjamin O,, ''The Control and Use of Drag-Free Satellites,"
Ph.D Dissertation, Stanford University, Department of Electrical
Engineering, Aeronautics and Astronautics SUDAER Rept. No. 194,
June 1964,

5. '"Proposal for Phase I Studies of the Sustaining Orbiting Geophysical
Observatory,” wvol, 1, Scientific/Technical, prepared by the Univ-
ersity of California at Los Angeles, Institute of Geophysical and
Planetary Physics Space Center for NASA, Dec 1962,
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TIDAL FRICTION WITH LATITUDE-DEPENDENT AMPLITUDE AND PHASE ANGLE

Tidal disturbing functions were developed in which the ampli-
tude factor k and lag angle € are expressed as sums of zonal
spherical harmonics.

in regard to the current evolution of the moon's orbit, the
existence of a second degree harmonic in the lag angle could make
a significant contribution to energy transfer to the moon; it is
unlikely, however, that it has an important effect on the overall
time-scale of the orbit evolution. '

If the moon formed in an equatorial orbit about the earth,
tidal friction could do nothing to incline the orbit. Once the
orbit was inclined, tidal friction could increase the inclination
further if there was a commensurability between the earth's
rotation and the moon's revolution.

Latitudinal variations in tidal properties would have
appreciable effects on close satellite orbits. An appreciable
second degree harmonic in the phase lag is needed, however, to
reconcile the available data with the rate of the earth's
rotational deceleration. Further progress requires satellites
free from surface force effects. |



A. INTRODUCTION

As has been established by various studies in recent years,
integration of the moon's orbit back in time uﬁder the influence
of tidal friction with the dissipation factor 1/Q inferred from
observations of lunar & solar motion bring the moon close to
the eafth only 1.0 to 2.0 x 10° years ago (Gerstenkorn, 1955;
MacDonald, 196k; Goldfeich, 1966) . Furthermore, at the closest
point the moén's orbit has an appreciable inclination with res-
pect to the earth's equator, which would rule out a fission
origin. Goldreich (1966) and Munk (1968) suggeéted, however ,
than an asymmetric tidal response of the earth may have had
a significant effect on the orbital evolution of the moon.

Additional data which have recently been developed use
the effects of tfdal potentials on artificial satellite orbits.
Kozai (1968) analyzed perturbétions of the inclination of three
satellites of 33° to 50° inclination. He obtained Love numbe}s
ke varying from 0.23 to 0.33 with uncertainties iess than + .03,
and phase lags from 0° to 9° with uncertainties of + 5 to 7°. |
Newton (1968) analyzed perturbations of the node and inclination
of four polar satellites. He obtained Love numbers kz varying
from 0.28 to O0.4L with uncertainites less than + .03, and phase
lags from 0.7° to 2.5°, with uncertainties less than + 0.8°.
Newton emphasized that there appeared to be significant rate-
debendence of both amplitude and phase angle. Herver, we still
might hope to explain some of the differences ambng artificiél

satellite analyses, as well as the discrepancies from the 2° - 2.5°



lags inferred from the deceleration of the earth's rotation
by an asymmetric tidal response: i.e;, one which is a function

of location within the earth.

B. DEVELOPMENT OF DISTURBING FUNCTION

Let the disturbing function of the sun or moon be repre-
sented in terms of the Kepler elements of the disturbing body
and the spherical coordinates of the point of calculation of

the potential (Kaula, 1964):

U= ) Bl Clhoog © Pem(sin®)
- 4,m,p.q

- | '
. {g?ﬁ}&-: z::n {yimpq ) m(k+9)},. ()

where r, ®, A are radius, latitude, and longitude respectively;
8 is the Greenwich sidereal time; Pcm(sin¢) is the Legendre

Associated function;'and

1 = o (S on) @
-t

Cimpq = ¥ Famp(1%) Gypqle*) (3)

Viapq = (4-2p)wk + (L-2p+q)M* + midx (4)



where G is the gravitational constant; m*, a*, e¥x, |%*, MX, ok,
(¥ are the mass and Kepler elements of the disturbing body;
and Fme(l*) and Gqu(e*) are polynomials as derived by Kaula
(1966) .

Now, regardiess of the nature of the tidal response of
- the earth -- oceanic, bodily, or otherwise -- so long as there
is no significant non-linearity (i.e., tidal terms interacting

with themselves or other terms), then the tidal potential at

the earth's surface r = R can be written as:

T(R, ©, A) = ) kylo, M) RE By O
impq

F .
cos m even

Pl in) (5 t-m odd

. {Vimpq - e&mpq(@, x) - m(l+6)} (5)

We should expect the Love number k£(m, X) énd phase lag
emeq(m, \) to bg rather smoothly varying functions of position,
and hence representable by spherical harmonics; this would cer-
tainly be true of that portion of their effect which would affect
satellite orbits. The full development of Eq. (5) would involve
products of tesseral harmonics, and hence would be most con-
veniently done in complex represéntation, along_the lines of
~ Kaula (1967). But a fairly elementary consideration shows that

any longitude-dependent part of the product kLemeq will have

its effect on any orbit 'averaged out" by the earth's rotation.



Hence for the purpose of orbital analysis let us assume ky and

Cmeq to be functions of latitude on}y,'which allows us to retain

a real representation:

- ky =) #gp Pro(sin®) ~ (6)
h
and
€ tmpq E:en(émpq) P o(sin®) | (7)
Rt

In derivations where the frequency dependence of € is not being
emphasized, we shall drop the argument (4mpq) .

if it is assumed that all the ¢, are small enough that
sin(eémpq) = €, cos(e&mpq) = 1, then the tidal potential at

the surface can be written:

T(R) =~ ) Kimpgq "th Pho(Sin®) Py (sing)
4mpghn

4~ ",
. [g?:;}&_"’ g - 001}

m odd

L~

. Slﬁ}
+ € Prolsin®){cos

m even{ ) (X 5 } 8
4-m odd Vi"‘pq mir+8) (8)



where
K = r* B Cy |
impq R™ Bim Pq . (9)

The product Pém(51nm) P (snnm) can be converted to a sum:

4]
PanPjo = kgm L jkm: Phem (10>.

Values of Qijm are given in Table 1. Applying Eq. (10) to
all products in Eq. (8) allows us to write'the'tidal potential

T(r) at any radius r > R as:

=) Kempq *th LUhkm
4mpghnks

'_{Kg)k+1 Pk; g?z}b-: even{ Vg m(k+6)}

- | .. y4-m even
R)S*! sih - :]
= - m(A+8)
n ansm(r> ~COSJ 1 odd { 2mpq }
(11)

Using the usual conversion from spherical coordinates to Kepler

elements of the perturbed satellite orbit (Kaula, 1966, p. 37),

£
(B)™" byt ino) €% fma

P

4+1 z cos : : sln’}'

= (a) FL A1) Gng(e). sin \ -cos
jg aven (4L-m) odd

* '{vmeq -.me} : ‘ o (TZ)..
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we get

Lika ) Kempq *th Qhkm
dmpghnks jg

(.B.)k+] { cos
a kaJ(l) ijg(e) ('l)msin (k-L) odd

(k-L)even

s+ 1
: - v R
{vkmjg Vimpg}‘+ n ansm(a) Fsmj(')
: (s-1) even
- -sin
. stg(é){('l)mcos}(s_é) odd {Vsmjg - vzmpqi] (13)

To simplify, let us substitute (kbe)ﬁ for “4h E: €, ansm’
: n

then we can write

k+1
T= ) Km9q<§>
tmpghkjg

(k-1) even . (k-2) even
‘ cos .. . =sin
. E“‘ (‘”ms‘“}(k-c)odd +(kze)h{(“)mc°5}(k-&) odd]

kaj(') ijg(e) Q¢ hkm

' {‘)kmjg ) Vfrgpq} | (14

For analysis of the moon's orbital evolution, we require

(1) zero rate:

Yemjg Vimpq = 0, (15)



or, from Eq- (4),

j= %(?-&) +p - . (16)

g = q; | . Q?)
and (25 small "dampiqg“ factor (a*Lf' ak+’)-', or

tk = 20, 22, 24, 33, or k2 | (18)
The cémbination 31 for Lk is excluded because a first degree

harmonic would represent a shift of the origin, the earth's

center- of mass. For lunar orbit evolutién then let us write

where

\
R
To = E; K2014(5) Fooo Go0q Q2n00 ¥201hq

ah

3
- (R
E: K2mpq<a) F2mp G2pq Q2h2m ¢22mphq (19)
qhmp

" Qg-2)htm Y(6-1)tmphq
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in which
_ . .
*Lkmphq = \K{'h CcOs (k"ae)h S|n> (Vkqu - V’impq)
and j is related to k, ¢, and p by Eq. (16).

For analysis of tidal perturbations of artificial satel-

lites, we require (1) no short period terms, or

g=2j - k-~ A (20)
) -1
and (2) small "damping" factor (a*L+1) s or
L =2 (21)

Eq. (14) thus becomes

k+1 g §
T L Koampa(B) Fimy Skj(25-k) Yok

mpqhk
cos k even -sin k even
. [‘zr\{(-n"‘ Sin}k odd (k¢e>h{("‘”m °°S}k odd]
) [v_kmj(2j°k) i "anqJ (22)

Values of the amplitude factors Kmeq and associated rates

Vanq are given in Table |-.

~-11-



C. EFFECTS ON LUNAR ORBIT EVOLUTION

Of the terms in Eq-/(l9). those with 4mpq = 2010 are
meaningless because 00000 is zero. The lowest value of h which
gives a non-zero Qh00 is 2. From Table 1-2, Kaot1 is appreciably
larger than KZOI-I' GOOI is the coefficient of cos M in the
expansion of a/r, or e. Writing out the parts of KZO!I and

evaluating Q,,0q from Table | we get

- gl ] o+ Bt ]
(&Y (%)e%(nagcos - wao €25in) (M-M*) (23)

From the Lagrangian planetary equations-of-motion, we get

(dropping asterisks:after differentiating To):

oS B T - 4] [ s B e - Jokees

% .3 .
~ BGmres (R)%, o e | (24)

and
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o= L ) [Berntt - 4] [Be + et

~

* (ka€s)

é%%g;%(g) %20 €2 | (25)

These terms express the effect of the interaction of the
eccentricity of the moon's orbit with a variation of the tidal
dissipation in the earth.which is symmetric about the equator.
Since the earth's rotation is not involved, there is no angular
momentum transfer: only energy transfer. éq- (2L4) states that
if dissipation is conqentrated near the poles in the‘earth,
the moon will move away faster; while if it is concentrated
near the equator it will move away more slowly. Eq. (25) is
merely consistent with conservation df'angular momentum, or
a%(l-ez)%- - |

Putting in numbers, we have forvthé present lunar orbft,

from Eq.'(2h), in planetary units

4o = 1.08 x 10°*% 4.0 €2(2011) (26)

From Eq. (41) of Kaula (1964),

-13-



. * 8 i
da ~ 2S(R)T o €0 (2200)

nazR\a
= 0.97 x 10" 34,0 €0(2200) (27)

The frequency (in an earth reference frame) for {mpq = 2200
is about 55 times that for tmpq = 2011. Hence, since a sig-

nificant part of the tidal dissipation is in the oceans, probably
€0(2011) << €4(2200) (28)

Furthermore, we would expect €, + €3P; to be greater than zero

everywhere, so probably
-€0(2011) < €3(2011) < 2¢5(2011) (29)

Thus it seems unlikely that the effect on the lunar orbit
evolution of non-uniformity of dissipation can explain the dis-
crepancy between the lag-angle inferred from lunar & solar motions
(most recently by Curott, 1966) and that from artificial satel-
lite.orbits by Newton (1968). Since h»/m is positive, for non-
uniform dissipation to explain some of the discrepancy its
contribution to ﬁ) should be negative and hence a, should be
positive, corresponding to a predominance around the poles
(see Kaula, 1968, p. 197).

The most significant result of Goldreich (1966) was that if
dissipation has been uniform over the earth's surface, the

inclination to the equator could never have been less than 10°

~.

-14-



within 10 earth radii. Goldreich suggested that strong local
dissipation in a few places in the earth's oceans or crust may
lead to unanticipated deviations from his results. No matter
how '"local" was this‘dissipation, and no matter how close the
moon, the main effect on the orbit must be expressible in spheri-
cal harmonics =-- just as is the case for satellite orbit per-
turbafioﬁs by gravity anomalies fixed in the earth. A faster
rate ofﬁ}otétion such as prevailed early in'thé earth's history
would make this all the more true.

For the inclination to be changed by the disturbing function
of Eq. (19), the combination Fme kaj[(k-Zj)cbt | - m csc l]
must be non-zero (see, e.g., Kaula, 1966, p. 40). For | = 0,
this never occurs: Fme kaj contains a non-zero factor only
for m = k-2j. Ifm#é k-2j, Femp Fimj is at least order 1?. All of
which goes to say that pureiy iatitudinai variations in tidai
properties‘can do.nothing to wrench the moon out of an equatorial

orbit. What is necessary is an interaction such that
[(k~2j) - (c-zp)] (w+M) + (s-m) (0-8) ~ 0  (30)

withs #m: 1i.e., a resonance. To maintain such a resonance
long enough to have significant effect, /8 must have about
equaled n/8, where n is the mean motion, related to u = G(M+m*)

by Kepler's third law,

¥ gmar ' | (31)

-15-



From conservation of angular momentum (Eq-. (59), Kaula, 1964):

c‘é = -%m‘k u3/3.n-4/£\‘ n (32)

where C is the earth's moment of inertia, or

n/8 = 3cmx~d u?/3 p¥e

= 3Cmx~! a7?®
~ 81/ - (33)

for a in earth radii. lﬁtegrating the moon back close to the
earth gives a rotation period of about five hdurs (Fig. 9,
Goldreich, !966), or 0.28 for B in the "planetary'" units of
radians/807 sec. Setting n as equal to 0.28 x 81/a° and equating
it to‘n by Keplér's law (Eq. (31)), wé get an absurdly large
semi-major axis a. Hence it seems unlikely that any longi-
tudinal variation in tidal propertfes ever had a signfficant
effect on thg lunar orbit. This holds true even for non-
linearities In the tides, since in Eq. (30) the tidal harmonic

ks now has a'completely independent specification from 4im.

The next, more desperate, possibility is that an irregu-
larity in tidal properties would affect n so much in a direction
counter to the central tidal term as to hold the moon at a
resonance point where its inclination could be changed. A

situation might have existed which is mathematically similar

S~

-16-



to that of Mimas and Tethys, with a tidal bulge taking the place
of the inner satellite Mimas. Howeyer,'the treatment of Allan
(1968) indicates that the inclinations must have been non-zero
before these satellites became coupled, and tﬁat the subse-
quent increase in the inclinations depends on a factor of

order 1°.

We thus seem to be forced back to the conclusion that at
least part of the moon was captured. The interesting question
then is how small a portion of the moon needs to be captured,
takihg into account that resonance with longitudinal variations
in tidal properties may help to further feed the inclination.
Since the mixed capture-fission hypothesis would involve seve~
ral more ramifications that either théory alone (see the dis-
cussion & conclusions of Goldreich, 1966), it seems appropriate
tc defer further consideraticn thereof to another paper.

In regard to the time-scale problem of the lunar orbit
evolution, the conclusion of Egs. (26) - (27) that latitudinaf
variation in tidal lag can accounf for only a minor part of
the current evolution indicates that it was of even less sig-
nificance in the past, and hence a less important effect than
changes in the extent of shallow seas, as suggested by the most

recent paleontological work (Panella et al., 1968) .

D. EFFECTS ON CLOSE SATELLITE ORBITS

We wish to examine the bahavior of artificial satellites

of small a/R under the influence of the'disturbing function

-17-



given by Eq. (22) with a view to explaining results alréady
obtained and-suggesting specification of-future orbits to
determine tidal properties of the earth.

Iin his analysis, Kozai (1968) determined k_and ¢ from the
perturbation of the inclination Al of argument Q. Hence he

used only the term mpghkj = 110021 of Eq. (22), or

T2 = K2100(§>3 .[' %sin | cos l] (1-e2)~¥2

* uzo(cos =¢€¢ sin) (Q-0x) (34)

Newton (1968) determined k and € from the perturbétions
of inclination Al and node AQ with arguments containing 0 and
201. He obtained the lunar and solar-orbit dependent factors
by numerical Integiration, which would be equivalent to using

all 6 terms m = 1,2 and p = 0,1,2, with ghkj = 0021 in Eq. (22):

T, = ) KZmpol(-g-)" ..-Zm,m (1-e%)" %2
mp '

* nao(cos =€o sin) m(Q-0r) . (35)

Since the perigee argument ®w is absent from the disturbing
functions (34) and (35), odd zonal variations h=1,3,5 ... .
in ka and € could not have given rise to perturbations of the
same period as equations (34) and (35); only even variaéions

h=2,4. .. Hence in the expressions for perturbation of

-18~-



A1 (dependent on 3R/20) containing the Love number k we can

make the substitution

R ‘3 kl _ R k+1
&) Famt S210 e (- kZh )" P2 Skcwr2r0
! :
Q “2h
2hkm(kae) (36)

m= 1,2; h,k even

and in the expressions for the perturabtion AQ (dependent on

arR/al), the substitution‘

al 210 kﬂe i a ol k(k/Z)O
A B )
© Q LA (37)
2hkm \
(kae) -
{ a) h ( .
= 1,2; h,k even

Let us define

k+1 .
RY .
Yhm = g B Frmir2 Gi(k/2)0 Q2him (38)

and‘

J,;m = ?thm/al ' (39)

-19-



Then (36) and (37) become

k - |
. *2h ]’
J = [y

€ h,
Z I (41)

(kae)

Kozai (1968) used satellites of essentially two specifi-

cations: a/R = 1.30, | = 33°, e = 0.16; and a/r = 1.22 + .0k,
| = 48.6° + 1.5°, e = .01. Newton (1968) used satellites of
one specification a/R = 1.157 + .016, | = 90.2° + 0.3°, e < .008.
Values of Jﬁm corresponding to the m values of terms used in
these analyses are given in Table I-3.

in Table 14 are summarized the results obtained by Kozai
and Newton. Newton's values for k and k& are based mainly on solar
perturbations and are combinations of values ranging from 0.31
to 0.38 which are weighted inversely proportionate to their
radiation pressure perturbations. In combining Kozai's values
for his 47.2° and 50.1° inclination satellites we have utilized
a similar weighting: 1/.21 for the 47.2° (ECHO 1 ROCKET CASE)
and 1/.07 for the 50.1° (ANNA 1B). |In defining the lag angle
we have accepted the Darwinian assumption, used by Newton, that
{t is proportionate to frequency: i.e., € = &6 form =‘I and
€ = 26 form= 2.

We also have included in Table |V the lag inferred from the
earth's deceleration, using the rate derived by Curott (1966).

It appears in the column kié, since it depends on aR/2aM and

the tmpq = 2200 term is dominant (Kaula, 1968, pp. 198-203).
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Applying Eqs. (LO) - (41) to the close satellite data in

Table IV we get as observation equations:

e .310, - .086, + .0L2Y (xz0,(x26)0 .0967,  .0000

- k429, - .204,+ .126 - .1072, - .0149
K2z, (%28)2)=

.986, .155, - .304 + .337, .0053
.986, - .008, - .026 ) \naa,(x208)s/) \+ 346, .0073

(42
Whicﬁ yield
Q2‘= 1372 - 240 Pso - .013 Peo | (hs)
'.(kS)g = .006 - .093 Pyo - -079 Pyo (L)

The large uap of - .240 makes significant terms “Lheﬁ’ when

both h and n are non-zero, appearing in Eq. (13). If we let

) Qnko *2t S2n = (K8 g - (45)
i,n

we get
6, = .002 - .028 bao - 263 Pso, (u46)

which is even more implausible-.
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An alternative procedure would be to use Newton's data
alone for w20 and uzz, and then use Newton's data with the moon

for (k6)ao, (k6)z22, (k5)34- We get

ks = .351.- .055 Pao | (47)

(k8), = .0072 - .0121 Pyo - .0004 P,o (48)
and
83 = .0195 - .0331.Pao - .0028 Pso : (49)

Eq. (47) is much more reasonable than Eq. (L43), and Eq- (L9) is
somewhat more reasonéble than Eq. (46). Physical'necessity requires
“only that 830 is positive; the existence of ocean tides makes it
possible that one of the zonal coefficients can be larger than 62z0.
Eq. (49) says that beyond the latitude where Pao is .0195/.0331. 58°,
phase leads should predominate over phase lags ih the tide meter
readings. A Statistical analysis would be worthwhile. A major
effect by ocean tides would invalidate the Darwinian assumption and
make it impossible to extrapolate any inferences to rates other than
semi-dirunal & diurnal, such as the monthly rate which Eq. (26) sug-
gests might be important in lunar orbit evolution.

With the data on hand we get only a tentative indication
of significant latitudinal variaéion’in'the earth's tidal pro-
perties. But it is certainly a good enough indication to war-

rant further effort in two directions: (1) the placing in

~.
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orbit of artificial satellites which are instrumented to com-
pensate for any surface forces, in order to determine long-
periodic (fortnightly or more) variétions in the orbit; and
(2) the transformation of tidal models of the earth to a form

compatible with the potential of Eq. (13) or (14).
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TABLE 1-1. FACTORS FOR PRODUCT TO SUM CONVERSION

' OF LEGENDRE ASSOCIATED POLYNOMIALS*

Pem Pro = g QUnkm Pim
f, m 0 Qpom %Unim %Unom Unzm Qntm Lnsm QU néo
2 0 0 1
2 0 1 2/5 3/5
2 0 2 1/5 2/7 18/ 35
2 0 3 9/ 35 4/15 10/ 21
2 0 & 2/17 20/77 5/11
2 1 0 o '
2 1 1 3/5 2/5
2 1 2 10/ 21 9/ 35
2 1 3 -9/ 35 | 1/15 W21
2 1 4 -4/ 21 3/77 | 5/33
2 2 0 1
2 2 i i/5
2 2 2 -2/7 3/35
2 2 3 - -2/15 1/21 !
2 2 4 /21 -6/77 1/33
3 00 " , 1 ‘
3 0 1 . - 3/7 SN 14
3 0 2 9/ 35 4/15 10/ 21
30 3 1/7 L/ 21 18/77 100/ 231
3 10 1 o
371 1 u/7 ' 3/7 ,
3 1 2 18/ 35 /5 2/7
3 1 3 2/ 21 9/77 50/ 231

===

*Neumann or Ferrers type:

PLm(cose)

(-1 (24-2¢)]

=4

= sin™® Z

t
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TABLE 1-2. AMPLITUDE FACTORS OF TIDAL TERMS

"Planetary" units: Jlength 6.37 x 10° cm, mass 5.97 x 10°7 g,

. / time 806.8 sec. .
MOON suﬁ
L m p gq Kmeq KLmDQ, J
2 0 0 -1 632 . 10°'° .929 . 10~}
0 - .229 .10°% - .111 . 10"®
1 - .40 . 10°° - .651 . 107"
1 -1 = .122 .10°® - .180 . 10~°
1t - .123 .10°%° - .18 . 10~°
2 -1 - .40 . 10°° - .651 . 10°°°
0 - .229 .10°% - . . 10°°
9 .1 ” ALEEI ()
1, .632 .10 .929 . 10
2 1 0-1 =-122 .10°°% - .180 . 10°°
0 441 . 107" 213 . 1077
. .852 . 107° 2125 . 107°
1 -1 - .350 .10°® - .515 . 10"
0 - .427 . 10°7 - .204 . 10”7
i - .350 . 10" - .5i5 . io“‘;’°
2 -1 - .365 . 10"° - .540 . 10~
0 - .189 . 10°®* - .921 . 10-°
[o] ' 1
1 .525 . 10°" 774 . 10”
2 2 0-1 - .584 .30°® - .859 . 10-°
0 212 . 10°° .103 . 10°°
| 1 409 . 10”7 .606 . 10~°
- R I 153 . 10°° 223 . 10°°
0 .186 . 10”" .888 . 10-°
1 .153 . 107° .223 . 107°
2 -1 634 . 10-° 112 . 10710
0 .393 . 10°° .190 . 10°%?
1t - .109 . 10°*° - ,160 . 10°*?
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TABLE 1-4. SUMMARY' OF ORBIT ANALYSES FOR TIDAL PARAMETERS
a e | k| klé kQ ‘kné '
1.30 .16 33° .312 .0000 -- --
1.20 .01 49° .250 .03L8 -- --
1.16 .00 90° .342 .0054 .351 .007h
60.27 .055 23.5° --  .0107 -- --
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II, ORBIT ANALYSIS

A, THE SELECTION OF ORBITS FOR THE DETERMINATION OF
THE TESSERAL HARMONIC TERMS OF THE
GRAVITATIONAL POTENTIAL

When candidate orbits are selected for geodesy satellites, it is
necessary to consider all possible ways in which measurable information
can be obtained from such orbits, Existing satellites, of course, yield
useful geodetic information, Drag-free orbits are therefore essential
only in determining otherwise unknown and unobtainable data, Geodesy
information obtainable from existing satellites is being considered,
with results reported in Refs, 2-1 to 2-4, %rom these reports, it appears
that the tesseral harmonic coefficients of degree 7-15 and order 3-~10
are the 72' pairs of coefficients which are least well known and probably
of most current interest, Figure 2-1, taken from Ref, 2-4, indicates

one group's opinion of the status of the tesseral harmonics,

Improved values of the coefficients of order 11-16 have been
measured by tracking the perturbations of existing satellites although
the effect of atmospheric forces may cast some doubt on the validity of

the data,

Previous studies have discussed (and we have verified) the
optimum orbits for measuring the unknown tesseral coefficients [Refs,
2-7, 2-8], But it is of more practicél importance to know the
minimum number of drag-free orbits requiréd to adequately determine all

of these coefficients,

In this Chapter, we review the pertinent perturbation theory and show
how a drag-free orbit increases measurability by protecting long-period
perturbations from distortions and allowing operation at lower perigee
altitude. We conclude that 69 of the 72 pairs of coefficients of interest
can be determined by Drag-Free Satellites in only four carefully selected

orbits which are specified and discussed.

1, Analysis of Medium and Long-Period Perturbations,

Medium-period perturbations will be defined as those with periods
which are fractions of a day., Long-period perturbations are those with
periods of several days, Perturbation analysis is begun by considering

the gravitational potential expressed in the form
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V—B--i- — ZZ:EEZZO.::R . (21)
i 2;; 20 5 ¢=2 ImPY '

in which (
a JA . ({-m)even
R = 8(E) 5 r, e, ey o} Vampg (2.2)
fmpg ~ a \a gm " fmp £pa” \sinf ()-m)odd '
and

(¢ ~-2P)w+ - 2P + M + m(Q - 9 = A m)]. (2.3)

Ypmpg )
The quantities a, e, i, Q, W, and M are the standard orbital elements,
and u 1is the earth mass times the universal gravitation constant,

sz and Xﬂm are the amplitude and phase anglé associated with the
tesseral coefficients of degree f and order m, The angle eE is
the hour angle of Greenwich and aE is the earth's equatorial radius,

The function mp(i), known as the inclination function, resuits from

“y
the potential being rotated into the orbit plane, It is given by

. Kaula [Ref, 2-5]

Fﬁmp(i) = :;: (2f - 2t)! XU sinz_m—zti
t! (f-t)! (L - m - 2t)! 2

% i(m cossi Z (z-m—2t+s\/ m-s (_1)é—k
S= “\\S e \ (& /\p—_t—c

(2.4)

where k 1is the integer part of (ﬂ—m)/z, t is summed from O to the
lesser of p or k, and c¢ 1is summed over all values for which_ the

binomial coefficients are non-zero, The eccentricity function G (e)

Zpq

comes from converting orbit radius and true anomaly into a,e, and M,
For (f - 2p + q) = 0, it is given by

pt-1 2d+4-2p° (2.5)

/’
1 g -1 2d + § - 2p.le
G (e) = ————7 : 29
(1-e2)*"2 G \2d + 4 ~.2p' d

p for p< f/2

Id
where p

(¢ -p) for p> fp/2.
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For (f - 2p + q) #0, G, (e) is given by
/

Ipa
- (= la| |q| 2k
6ppq(® = DI+ g5 Z  Pipak Upak ° (2.6)
where
B = ,
T >
(2(p -1’,) -1)F <(E ~2p" 4 q')e)r
Pipax = r! 26 ‘
h = k+q’, q’>0
= k ’ q’\ 4
and

h ’
' “2p ’ ’ r
_ 1 () -2p" + q7)e
szqk . z <h - r) r! ( 28 ) ’

r=0
h = k , q' >0
k ~a’, @'< 0.
Here,
p’=p, q°=q for p< f/2,
p’ = 2-p, q° =-q for p> f/2.

' --

The instantaneous time rate of change of the orbital elements duc
to any one term in the gravitational potential is found from the

Lagrange planetary equations

. 2 ORr

a an OM

e :Vl‘e <A/1-e' ) (2.7)
nae

cos i BR A 1-e2 BR

w = - i
na2 1-e2 sini.ai na e ae
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A . -
o= Gos‘iaﬁ - %%) 2.7)

na? ,/1-e2 sin i . Cont,
b N 1 aR
nazﬁll—e2 sin i Oi
oo n-le R _ 2R
na“e de na Oa
where R =R given in Eq, 2,2 and n 1is the mean orbital rate.

£mpq
Approximate solutions to these equations are found by treating the

¥ as linear functions of time [Ref, 2-5].
£mpq

The medium-period perturbations of the in-track position of the
satellite can be found for any given sz and Xﬂm from the closed~form

approximate solutions of Eq. 2.7 for the expression (Aw + M 4+ AQ cos 1),
These perturbations, which fluctuate with a fréquency of m times per
day, are obtained by choosing particular combinations of the indices

p and q such that () - 2p + q) = 0, 1i.,e.,, the effect of the rapidly

; S TR
For this

changing mean anomaly M 1is missing from the augle wﬁmpq'
case, the amplitude of the in-track angular displacement, (M + MM 4+

N cos 1) is

(M + MM + AQ cos 1)max =

)/
ua J —e2 _(1-e2
E_“4m [{«fl e -(1-e%) }F 4G | 2(2+1)ch'

naz+3[(z—2p)& + m(é-éE)] de

(2.8)

e

where the indices have been dropped from F and G . The rates
. . fmp Lpq
w and  are found by the usual first-order approximations
2
. 3n J20 aE 2
W o= - —— [1 -5 cos” i],
4(1-e2)"a
and
2
R 3n JZO aE .
N = - —— 5~ cos 1.
2(1-e2) a

-32-



Equation 2,8 is valid for any orbit, so this perturbation repre-
sents a quantity which, if measurable, can be used to determine the
coefficients ‘sz and sz. Additional perturbations to the cross-track
and radial positions of an orbiting satellite also give a measure of
the coefficients' magnitude, although the latter two are not as large
as the in-track perturbation, In general, the medium-period fluctua-
tions of the orbital elements are not large, and it is necessary to

examine the long-period or resonant perturbations in order to obtain

the desired coefficients more accurately,

The closed-form linear solutions to the Lagrange planetary equa-

tions all have the rate term

‘ngpq = (U -20)0+ (L - 2P + @M + m(Q - BE)

in the denominator, For instance,

21 aEE cos| (J - m) even
A2 = ———————e——— FG() - 2D + Q) . .
+Z : ! 2 !
naz wzmpq , sin| (4 -~ m) oda ¥™Pd

These solutions are valid except when this rate term is very small, If
¢Empq is small, the sine and cosine terms in the planetary equations
change very slowly, allowing large amplitude buildup, Then, the
assumption of small perturbations leading to the closed-form solution is
not valid: The condition Wﬂmpq ~ ? occurs when (f - 2p + q) M g'méE
because @ 1is small compared with M, and ) is small compared

with éE. This is, of course, the condition of resonance for which the

orbital frequency is an integer multiple of the earth's rate,

No general closed-form solution of the planetary equations, valid
for the resonant case, is known at this time. Vagners [Ref., 2-6]
obtained a solution for orbits of small eccentricity and (f-2p + q) =1
by combining the von Zeipel method with perturbation techniques of
Hamiltonian mechanics, There are special cases where a pendulum solution
for the osculating value of the nodal longitude of the mean satellite

is quite accurate [Ref., 2-7]. 1In general, however, the exact solution
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to the perturbations of the elements, due to those tesseral harmonic
terms which are in resonance with the orbit, can be found only by
numerical integration of Eqs, 2.7. The solutions depend on initial
conditions and the degree of commensurability that the orbit has with

the resonant condition,

Consider the case where the number of revolutions per day equals

the order m, that is, (f - 2p + q) = 1. For this

Q- @b+ i+ m h-6)
1 : ' (2.9)

~

o]

~
i

where C1 is a constant dependent upon the mean elements of the par-
ticular orbit, Thus, for a given resonant orbit, there is a large set
of beat frequencies izm(q) corresponding to each q (assuming the
inclination is not too close to the critical inclination, For the case

of (f - 2p +q) =2

Wzmz(Q) = (2 - QW + 2M + mz(Q - GE)

Hence, another large set of beat frequenties exists and, in fact, many
other sets exist for C1 4 0 or some multiple of w. Because of fhis
spectrum of beat frequencies, it is theoretically possible to detect
the effect of mény tesseral harmonic coefficients from a given resonant

orbit,

The physical reason for the existence of the multiple beat fre-
quency phenomenon is due to the combination of two effects, Orbital
eccentricity causes a satellite to be more strongly attracted by the
bulges due to tesseral coefficients at one part of the orbit (near
perigee) than the other, 1In addition, the argument of perigee has the
rate  which slowly moves the point of strongest attraction around
the orbit, The tesseral harmonics have both zonal (f, latitude) and
sectoral (m, longitude) dependence, The earth's rotation makes a

family of the tesseral harmonics (common m) resonate with the orbit,

-34-



The members of this family each have a different latitude dependence,
however, and so the point of maximum attraction dwells for different
durations and with different frequency near each. Thus, the long-period
perturbations associated with a slightly-off resonant condition does not
exactly coincide with the repeatability of the node passing through a
wave length of the sectoral dependence; rather, the long-period effects
are different,ﬂin general, for each latitude dependence, These effects

show up in expanded powers of e and multiples of w,

The rates h, M, and @ are not usually constant in the resonant

situation, so, following Ref, 2-7, consider the acceleration of the

elements, If the elements are designated X, where 1 =1, ., , ., 6,
then .
3 2 ] .
. d L 55 axi dx . axi
5 = Er—--—‘l + =7
42 j=1 Oxy Tat T "ot
3, . .
= -S-i‘w + 3——.-)(. '
W xj=a,e,i xJ J
All quantities but M are of order me. For acceleration of mean
anomaly, ' '
. 3n . 2
= -=-—a 0 . c
Mmeq 2 a fmpg + (sz wlmpq) + (sz) ,
~ .3 n /2 3R
- 2 a \na oM
. 2.10
J) (L-m) even ( )

{—sin} WL
- i mpq PY
(£-2p+q) Fi,,mp(l)sz’pq(e)%m c0s) (g _ny odd

a
Although Eq. 2.10 is an approximation, it can be used to deter-
mine the relative magnitudes of the perturbations to the in-track
position of a satellite in a near-resonant orbit, Two remarks can be
made about this equation:

(1) Because Mzmp ~ (q;/a)z, the effects of higher degree terms
are attenuated,
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2, GEp (e) 1is proportional to quI. Thus, higher values of lQl
teng to decrease Mimpq. This is especially true for small

eccentricity, The highest possible eccentricity is therefore
desirable, 4 .

For a resonant orbit, the number of pairs (sz, A m) of unknowns which

can be determined is equal to the number of distiﬁct beat frequencies
which can be measured from the in-track perturbation, This is true,
provided that the satellite remains in.the orbit for at least one-half

the period of the smallest required beat frequency. Thus, it is important
that the orbit be "tuned" closely enough to exact commensurability so

' that the resonant effect is a large one, and yet preferably not so close

that one beat period is too long to observe in the satellite lifetime,

To determine which resonant orbits should be used to obtain particular
(sz' sz), the magnitude of Mﬂmpq is computed (using hypothetical
values for sz) and examined for measurability, The eccentricity is
assigned a value which seems very comfortable for a Drag-Free Satellite
and the dependence upon inclination is investigated by letting inclina-

tion range frow G° to $0°,

2,- The Selection of Resonant Orbits

The above analysis suggests that the following procedures should
be used in selecting resonant orbits for determination of poorly known

tesseral harmonic coefficients,

(a) Determine which tesseral harmonic terms can be adequately
measured by observing the medium-period perturbations of
existing satellites,

(b) For important terms not obtainable from existing satellites,
investigate the possibility of determination from satellites
placed in resonant orbits, The order (m) of the terms deter-
mines the semi-major axis of the orbit required., The inclina-~
tion of the orbit should be chosen so the resulting accelera-
tions in mean anomaly (M) for each term of order m is large
enough to produce a detectable effect, The total effect can
be determined by computing M vs i for the various combina-
tions of (4, m, p, q) of interest, For example, suppose
it is determined from a series of M vs i plots that an
inclination exists such that in-track perturbations are
measurable for ¢ in the range -3 to +3, Then seven

pairs (qﬂm’ Azm) can be determined from this orbit, If
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there are ten pairs of coefficients required with this
particular order m, then at least two orbits will be
required for this particular semi-major axis,

(c) This procedure can be repeated for each m in the range of
orders of the (Jﬂm,hgm) terms sought., If a range of
acceptable inclinations exists for any two adjacent values of
m, then satellites can be put into both these orbits, using
the same booster, without a plane-change maneuver,

(d) If a desired pair of coefficients (Jpm,A gm) can be only
marginally determined from a particular resonant orbit, a
comparison must be made of the relative merits of establishing
that orbit or trying to determine the coefficients from the
medium-period perturbations on another orbit.

As indicated before, coefficients of degree 7-15 and order 3-10

are of primary interest, It is feasible to determine all these coeffi-
cients from four satellites which have orbital frequencies of 3, 4, 35,

and 7‘times‘per day.

3. Computation of The Amplitude of Mgmpq

lMImax vs i computations have been made for different coefficients
in both Refs, 2-7 and 2-9, In these studies, however, the value of q
was limited to O and * 1, Here, because we are looking for a measure
of the perturbations due to many beat frequencies, these computations

-

need to be expanded.

The hypothetical value of Jﬂm used in the computation of the

amplitude of M is
. £mpq
1/2
- 1 4 —
P (S TR (2.11)
(4 + m)!
where Egm is the normalized coefficient, Kaula [Ref. 2-5] gives the
approximation
-5
J = “/__5__’(_1_0__ o (2.12)
fm zz -

and Allan [Ref, 2-9] uses
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10

- 12.2 x 10 10

J 20+3 1/2
22 + D321 + 3)

Im (0.93)

which are nearly equivalent, Although published estimates of actual

(Jﬂm’ A

analysis, so Eq. 2.12 is used instead,

Zm) through (15, 15) exist, these only tend to confuse this

To determine coefficients of degree 7-15 from a single orbit, at
least nine beat frequencies must be detectable, To get an idea of how
the perturbation is attenuated by increasing Iql, a series of computer
runs of IMI vs 1 was made for m = 7, J ranging from 7 through 15,
and ¢q ranging from -4 to +6. The altitude of perigee was chosen as
450 km which is easily within the capability of a long-life Drag-Free
Satellite, The semi-major axis was established as that required for a
satellite to orbit the earth seven times per day, The output of these
runs consists of a series of plots of IMI (denoted by IMDDOTI) vs 1
and ig found in Appendix A, Here, the index s ig the number of orbits

per day, The quantity () - 2p + ¢q) in Egq. 2.10 is replaced by (m/s).

Referring to Appendix A, it is seen that, in general, the magnitude
of IMI does indeed decrease with increased f and Iql. It was desired
to determine how large the in-track resonant orbit perturbations are
due to the relevant coefficients of ordér m=ys, It also was necessary
to determine if measurable perturbaticns exist corresponding to each
beat frequency, Consequently, the index q = 0 was assigned to the
(4,p) = (15,7) combination and other q's were assigned to other com-

binations of lower degree [,

Another series of computations of lMl was made for resonant orbits
with s = m ranging from 3-6 and 8-12 with altitude of perigee at
450 km, The combinations of (f,p,q) investigated in particular were
(15, 7, 0), (14, 7, 1), (138, 7, 2), (12, 5, -1), (il, 4, -2), (10, 6, 3),
(9, 6, 4), (8, 2, -3), and (7, 1, -4) although some other combinations

were included, The plots from these runs are presented in Appendix B,

By examining the plots of Appendices A and B, it can be seen that

the general level of |M| over the range of inclinations increases with
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increasing order m, This is primarily due to the decrease in semi-
major axis as m 1is increased with perigee altitude held constant, It
can also be seen that there are several places where IMl sharply decreases
and then increases as inclination is changed, These places correspond

to points where the inclination function F(i) changes signs, Such
croséover inclinations should be avoided, If one removes from consider-
ation, the near neighborhood of critical inclination, those inclinations
corresponding to crossover points, and those with M 1less than what can
be regarded as a minimum detectable level, then what remains are those
_ranges of i constituting possible inclinations for a geodesy satel-

lite,

If the minimum beat period is 60 days, an acceleration with maximum
value of 10_5 deg/day2 will result roughly in an intrack perturba-
tion of amplitude betweeﬂvloo and 1,000 meters, Thus, one can consider
an IMI of 10—5 deg/day2 or larger as constituting a substantially
meésurable effect, |M| between 10_6 and 10—5 deg/day2 as being margin-
ally detectable, and |M| less than 10"6 deg/day2 as being undetectable,
Applying this criterion to the data of Appendix B, one can see that the

J J J and J terms for the combinations of

15,3’ "14,3’ J13,3’ 7,3’ 15,4 _

(p,q) chosen are only marginally detectable, (In fact, the general
magnitude of the acceleration of J15,3 is so small that unless close
tuning can be achieved, it can be as accurately predicted from medium
period effects on low satellites,) The rest of the coefficient combi-

nations tend to have large ranges of quite detectable accelerations,

_ As an example of the mean anomaly accelerations IMl, for the
distinct combinations of (f, m, p, ¢) investigated, Table 2-1 was prepared
for various values of m, Two values of inclination are shown for the
orbits with s = 3-6, For the inclinations shown, only J is not

15,3
J J J J J and J are

14,3’ “13,3’ "12,3’ "7,3" "15,4° "7,4’ 7,6
marginally detectable, and the rest are easily detectable by the cri-

detectable, J

terion given above, This is dependent, of course, upon the particular

combinations of (p,q) chosen,

Consider now the possibility of determining coefficients from orbits

where m = 2s, 3s, and 4s, i,e,, conditions of greater than one-day
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commensurability, Since

I.. I ’ fE_ z m

it - - ( ) (—) F_ (i) G _ (e) J

4mpg 3\ o) \5) Tpmp £pq fm’

then for fixed ({, m, p), the attenuation of lMi for the higher orbit
will be

s £+3
|| "1 S1\ /2 ()

= (= News) - (2.13)
| 1] 2 2/\"1°%’/

" Here, the indices 1 and 2 represent those quantities corresponding to
the lower and higher orbit respectively, The value of q2 corres-
ponding to Gz(e) is equal to (ql + Sl/sz) where a4y corresponds to

(4 + 2+ q) = m/sl. Tables 2-2, 2-3, and 2-4 show ratios of lel/lMll

for m = 6, 9, and 12 in.the s = 3 orbit, m = 8 and 12 in the s = 4
orbit, and m = 10 in the s = 5 orbit, Table 2-5 shows the resulting
values of |ﬁ!for inclinations of 58" for s = 3, 50° for s = 4, and

52° for s = 5 orbits, It can be seen that except for J15,6’ all
overtone coefficients are at least marginally detectable in the s = 3
orbit, For s = 4, only the J12,8' term is marginally detectable with
the rest being quite*detectable by the above criteria, For s = 5,

all m = 10 terms are quite detectable, It must be remarked that no
special effort was made to maximize the effect of the overtone terms

in selecting the inclinations used for Table 2~5., With further effort,
there can undoubtedly be improvement, The point is that a great deal

of information can be obtained from the s = 3, 4, and 5 resonant

orbits in addition to what is obtainable from the fundamental beat
frequencies, Iﬁ fact, all but three of the 72 pairs of the desired
coefficients can be found from those orbits, It also must be emphasized
that the choice of cutoff points between what are referred to as undetect-
able, ﬁarginal, and quite detectable perturbations is strongly dependent
upon uncertainties due to tracking and perturbing surface forces on the
satellite, Tor a Drag-Free Satellite, thebeffect of surface forces

can be attenuated to the point where tracking uncertainty is the major

limiting factor. —41-
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4. Additional Advantage of the Drag-Free Satellite for Orbits of
Small Major Axes, ’

To determine the coefficients of the harmonic expansion of the
earth's gravitational potential from satellite perturbations, it is
important that these perturbations not be obscured by other forces such
as those due to radiation pressure and atmospheric pressure, Because
these forces are always present to some degree, their effective removal
by use of a Drag-Free Geodetic Satellite will always produce more
confidence in the validity of the tracking data, The situation in
which greatest improvement would be obtainéd is with orbits of low

perigee altitude,

In the literature [ Refs, 2-1 through 2-4], it is reported that
there are a number of resonant satellites in the range s = 11-15 and
that the coefficients with these orders can be reasonably well deter-
mined, If one considers a circular orbit with a frequency of 14 rev/day,
because of the eIql factor in the G(e) function, only the beat fre-
quency corresponding to q = 0 1is detectable, One cannot assume that
for J > 14, the tesseral coefficients are so small that their effect
is negligible if Eq. 2.11 and 2.12 are valid. In other words, for a
circular orbit, the J15’14, J17’14, and J19’14 coefficients will all
significantly affect the q = O perturbation, Thus, one must make the
orbit as eccentric as possible to obtain these coefficients by increas-
ing the number of detectable beat frequencies, A Drag-Free Satellite

- can contribute significantly here by allowing the low perigee altitudes

necessary for increasing eccentricity to an acceptable value,

To illustrate the effect of an increase in eccentricity, Table 2-6
was prepared showing the change in the magnitude of the Gﬁmpq(e)
function for the s = 14 orbit, The values of degree fJ ranged from
414—20 and ¢q from -3 to +3 which would produce 7 beat frequencies,
The eccentricities used correspond to perigee altitudes of 350, 500,
650, and 800 km, Appendix C contains the [MI vs 1 plots corresponding
to this range of indices for an altitude of 350 km, To determine the
IMl for any other perigee altitude, multiply “@LO by G(e)/G(0.0748)_

For example, when i = 50, the following results are obtained in a
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comparison of the 350 and 800 km perigee altitude cases,

TABLE 2-6
COMPARISON OF MEAN ANOMALY ACCELERATIONS FOR

FOR PERIGEES OF 350 and 800 KM

deg/day 2
L P q [fiasol x 10°|[Hgool x 10°
14 5 | -3 2.752 0,013
15 6 -2 32,754 0.850
16 9 3 1.240 0.006
17 9 2 24,748 0.622
18 g8 | -1 196,01 26.38
i 19 9 0 332,51 209.20

20 | 10 1 171,72 21,82

It- is evident that the eccentricity effect is significant for lql > 2,

The perturbations due to coefficients of degree J > 15

substantial,

-4 8-
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III., SATELLITE DESIGN

Since 1963, Stanford University has been developing drag-free tech-
nology for application to several possible missions (e,g,, an aeronomy
mission, and an unsupported gyroscope mission), Throughout this work,
we have become convinced that it is possible to build the basic mechanism
(proof mass, pickoff, processing electronics, and thrusting system)
with standard state-of-the-art flight hardware and techniques, The
interface of the drag-free device with the rest of the satellite can
be simple or complicated depending on the requirements for the other
aspects of the mission (other experiments, physical configuration con-
straints, kind of telemetry desired from the drag-free mechanism, etc.).
Reference 3-1, for example, proposes a very simple complete Drag-Free

Satellite for use in a low altitude aeronomy mission,

The discussion in this part of the report has therefore been limited
to the feasibility of applying the drag-free principle to goedesy missions,
In particular, it is concerned with any special requirements arising

through application to geodecsy,

The drag-free device very effectively cancels the disturbing accel-
erations due to surface forces such as atmospheric drag and solar radia-
tion pressure, The largest remaining non-geodetic disturbing acceleration
is that due to the mass attraction of the satellite itself on the proof
mass, This acceleration can be as low as lo_llg or as high as perhaps
10_8g depending on the care with which one manages the mass distribution
within the satellite (particularly the masses within say, 10 cm of the

proof mass),

The principal component of this mass attraction is due to the fact
that the satellite mass center does not necessarily coincide with a point
of‘zero mass attraction, Since the proof mass is nominally at the
- satellite mass center and the points of zero mass attraction are fixed
points in the satellite, spinning the satellite about an axis normal to
the orbit plane will tend to average the orbit plane components of this
force, This will reduce the intrack disturbing acceleration by about

2 orders of magnitude below that attainable without spin,

~50-~



Sections A and B which follow , present solutions to problems
which arise for a spinning Drag-Free Geodetic Satellite, First, active
attitude control to maintain the spin axis normal to the orbit plane;
then, phenomena in the translational control uniquely associated with

spin and the system mechanization are discussed,

It is not necessary, of course, that a Drag-Free Geodesy Satellite
be spin stabilized, Quite useful geodetic information could be obtained
with & gravity stabilized Drag-Freé Satellite, such as GEOS-C with a
modular, add-on drag-free package. With such a satellite, tﬁere is the
question of whether or not the translational control system could couple
into attitude motion (through misalignment'errors in the pickoff and
thrustors) in such a way as to cause attitude instability,., This topic

is discussed in the final section of this Chapter,

A. MAGNETIC ATTITUDE CONTROL OF A SPINNING DRAG-FREE GEODESY SATELLITE

As discussed in Chapters I and II, intract perturbation of a
Drag-Free Satellite is the effect which contains the most significant
geodetic information, It is desirable to minimize as much as possible,
the effect of all other intrack disturbances from these measurements,
This can be done most easily with a spinning Drag-Free Satellite with
spin axis normal to the orbit plane, The spinning motion allows very
effective averaging in the orbit plane of the major components of mass

attraction of the satellite mass on the proof mass,

Because many disturbance torques are present which can drive the
spin axis from the orbit plane normal and change the satellite's spin
speed, an attitude control system must be provided to correct for these,
An excellent method of providing this attitude control for the orbits
of interest is to make use of the earth's magnetic field, By creating
a magnetic dipole moment in the satellite, a torque is produced on the
satellite as this moment tries to align with thé earth's magnetic field,
By controlling the direction of the dipole moment, one has the ability

to control both the'pointing direction and spin speed of the satellite,

The basic idea of magnetic attitude control is not new and has been
studied extensively and used in several satellite systems. 1In the

following sections, a new method of three-axis magnetic attitude control
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is developed which'can rely on a single magnetic coil. First, the
linearized equations of attitude motion are developed and the effect of

a nutation damper is added., Then, a brief review of disturbance torques
acting on the satellite is presented., Following this is a d?scussion

of the use of a state estimator driven by horizon sensors to determine

the attitude errors, With this information, the magnetic attitude control
system is developed for a satellite with mass symmetry about the spin
axis, This sysfem has three modes so that both pointing control and

spin control can be achieved, A procedure for determining control gains
which will provide an average optimum performance is presented, Stability
is demonstrated by using Lyapunov and averaging techniques, Then, a

brief summary is made of the analog and digital simulations of this

attitude control system,

1, The Attitude Dynamicé of Rigid Spinning Spacecraft

In this part, equations representing the dynamics of the spinning
spacecraft with respect to relevant coordinate systems are developed as

a means of notation and coordinate system definition,

a, Spacecraft Kinetics,

‘ If it is assumed that the control axes (the axes about which
control torques can be applied) are the principal inertia axes for the
spacecraft mass center, then the kinetic equations describing the

vehicle's attitude motion are the well-known Euler equations

wz]

W 1[T (I I)Q
T I y T Yy zz’ Ty

XX
. .
w = —;; [Ty + (IZ - Ixx) wxwz] v (3,1)

2z

1
W, = 7o [T+ Uy

-I D)Dww] .,
22 Yy Xy

X

(Tyxs Iyy, Izz) are the principal moments of inertia, The

vector wB-I is the instantaneous angular velocity of the body with

Here,

respect to an inertial reference frame, The quantities (wx, wy, wz)

are the measure numbers in the body-fixed frame aligned with the principal

52



axes, The gquantities (Tx, Ty' Tz) are the measure numbers in the same

body-fixed frame of the external torques acting on the satellite,
/

b, Coordinate Systems and Spacecraft Kinematics.,

The coordinate systems of interest are shown in Figs, 3-1
to 3~3, The primary inertial reference frame is defined by the QI
axis pointing to the Vernal equinox, the 21 axis pointing along the

earth's spin axis, and 91 completing the right-hand orthogonal set,

Figure 3-2 shows the ''local" reference frame with §L along the
direction of the vector R from the geocenter to the satellite, The
axis EL is normal to the orbit plane and along the orbit's angular
momentum vector, and §L completes the right-hand orthogonal set,

The angles i, O, g, and £ have the usual definitions of inclination,
right ascension of ascending node, argument of perigee, and true anomaly,
The local frame will be used as the reference set (R) later, in the |

study of controlling alignment of the spin axis with the normal to the

orbit plane,

¢, Linearized Equations of Motion

When it is desired to keep the spin axis aligned normal to the
orbit plane, the natural axes about which to apply controi torques are
the local axes (L) of Figure 3-2, These correspond to the reference
axes (R) of Figure 3-1, Howevér, the closest possible positions of the
principal axes of the satellites are the intermediate axes labeled (P)
in Figure 3-1, These axes correspond to the orientation of the body-

fixed axes at the time when the angle y equals zero,

Assume that the angles ¢ and § (corresponding to yaw and roll
angles about §R and §P respectively in Fig, 3-1) are small enough so

that the approximations

sin ¢

[
o

sin @

1R
o)

cos ¢ = cos g =1

can be made,
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FIG,

3-1,

NONCLASSICAL EULER ANGLE TRANSFORMATION FROM A
REFERENCE FRAME (R) TO A BODY-FIXED FRAME (B)
BY SUCCESSIVE ROTATIONS ABOUT THE x, y, and z
AXES THROUGH ANGLES ¢, 6, and ¥,



FIG, 3-2, ORIENTATION OF THE LOCAL (L)
REFERENCE FRAME

FIG, 3-3, GEOMETRY OF THE ANGLES AND
ANGULAR RATES OF THE WOBBLE
PROCESS,
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Assume also that wz = é = constant >> g + %. Then, for a satellite

with mass symmetry about the spin axis (i.e,, Ixx =1 ), Eq. 3.1
yy
can be written in the constant matrix form ’

. ) — NN - I
o] 0 -D 0 0 a 1 0
X X T
a D 0 0 O0||la o 1| *L
.y = y -+ T . (302)
¢ 1l 0 0 n ¢ 0 0 yL
é 0 1 -n O o 0O o
- J — - e — -

In this equation, ax and ay are the QP and ?p measure numbers of
the angular velocity of the body with respect to the inertial frame,

and Ty and T, are the QL and ?L of the torques applied to the

XL L
body (normalized by Ixx)' D is the ratio of the moments of inertia

times the spin rate,

The constant n corresponding to mean orbital rate, has also been

substituted for é + f, which is time varying for an elliptic orbkit,

d. Addition of a Wobble Damper,

Figure 3~3 depicts the geometry of the angles and angular rates
of the wobble process, The body axes QB,.§B, EB are rotated from an
inertially fixed set ﬁ, ?, Z through the classical Euler angles
€, n, and {, The 7 axis is aligned with the total angular momentum
vecfor ﬁ, Thé rates é and ﬁ are the inertial precession and nuta-
tion, The nutation angle 7 1is described by

—

= w /H . (3.3
cos 17 Izz z/ (3.3)
The term '"'wobble damping' is defined as the driving of 1 to zero,
If the nutation angle 1 1is small, and wz is held approximately
constant, then the so-called "energy sink approximation" technique

yields the relationship ﬁ = ~dy where d is the time-constant of
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the wobble damping process,

After a bit of algebra, it can be shown that the effect of
the damper is the addition of two diagonal terms in the 4 X 4 system

matrix of Eq. 3,2, Equation 3.2 thus becomes,

r—. - r - — r~ 1
a, -4 -D 0 of |a 1 o - -
v XL
a D -d 0 0 a 0 1
_y = y + . (3,4)
¢ 1 o 0 n ¢ 0
. TyL
6 0 1 -n O 9 0 0
— — I R SR . J I o

Equation 3,4 will be used throughodt (this) section, A, to determine the
desired control system for a spinning symmetric geodesy satellite,

The exact equations of a mechanical wobble damper are generally more
complex than has been assumed by the energy-sink procedure used here
and require evaluation of a higher-order system [ Refs, 3-2, 3-3,

and 3-4], However, most references on the subject indicate that the
energy-sink approximation gives results reasonably close to actual
behavior, so the method will be retained rather than increasing the
order of the system equations which would be necessary for a closer

investigation of the effect of a particular type of damper,

2. Disturbance Torques

Disturbance torques acting on the satellite can be broken into
three categories, Two, referred to as "inertially-fixed" and "body-fixed"
torques, are those which tend to move the spin axis from the reference -
and are about.the vehicle's lateral axes, The third type of torque

is about the spin axis and tends to change the rate of spin speed,

Short discussions of the following important inertially-fixed

torques will be presented here

a, atmospheric

b, radiation pressure

¢, misalignment of translation control jets
d., magnetic effects

e, reference-frame kinematics,
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Full developments can be found in the indicated references,

a, Atmospheric torques

Consider the atmosphéric torque acting on a cylindrical satel-
lite with uniform wall material, If 62 1s the distance from the
mass center along the axis of symmetry to the geometric center, then,
from the analysis of Ref, 3-5, it can be shown that the inertially

fixed torque magnitude acting on the satellite is

= (T

Taero end + P

cyl)éz : (3.5)

where, for diffuse reflection

[t}

2 .
ZerVi. sin q [ sin ng, + /e (Vr/vi)]

cyl
T = 7Tr2pv.2 sin n. cos 7.
end i i i
and
£ 4 cylinder length
r 4 cvlinder radius
o) 4 atmospheric density
Vi 4 relative speed of incoming molecules
Vr 4 relative speed of outgoing moleculés
ul 4 angle between incoming velocity and the wall surface.

The ratio Vr/Vi =,1 -, where ¢ is the accommodation coefficient
for the particular surface, References 3-5 and 3-6 present accommodation
coefficients ranging from 0,3 to 0,95 depending on the wall material

and gaseous medium involved, The relative velocity Gi is found by

V, = -Vaikn xR (3.6)
where V = inertial velocity of the spacecraft
Be = earth spin velocity
R = radius vector from the geocenter
K = wind constant,
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The angular velocity of the upper atmosphere has been determined by
examining changes in inclinations of various satellites by King-Hele
[Ref, 3-7]. He found K = 1,46 for nine satellites at heights of
200 to 300 km, The atmospheric model used here is developed in
Refs, 3-8 and 3-9,

b, Radiation pressure torques.

Direct solar radiation pressure in the vicinity of the earth is

-5
Ra, = 4.66 X10 dyne/cm2 . (3.7)

Earth emitted radiation pressure is

Ra, = 7.53 X 1076 dyne/cm2 . (3.8)
By numerical integration of the solar energy reflected from the earth
to a satellite, the following emperical relationships have been found

for the pressure due to this reflected energy.
-5 -4 2
Ra, = 1.80 X 10 ~ exp(-3 X 10 h) cos B dyne/cm” , (3.9a)

in which h 1is the satellite altitude in km, and B the angle between
the earth-satellite radius vector and the earth-sun line, Ra3 is
assumed zero for B > 7T/2, The reflected radiation vector is at an

angle of (B + vy) rad from the earth-sun line, where

-8

£/t % raa (3.9b)

and

1o

£

' -4
. 4.89 - h(5.82 X 10 ) rad. (3.9¢)

According to Evans [Ref, 3-10], the pressure and shear stress
components due to a radiation source vector Ra striking a wall at an

angle [ range from
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p = (Ra) sin {(sin { + 2/3 p)
(3.10)
T = (Ra) sin { cos
for diffuse reflection to
2
p = (Ra)(A + p) sin”
(3.11)
T =. (Ra)(1 - p) sin { cos

for spectral reflection, Here, p 1is the surface reflectivity, Because
the radiation pressures can be formulated as vectors, the radiation
disturbance torque evaluation is done in exactly the same fashion as

for aerodynamic torques,

c. Torques due to translational control thrustors.

There are two apparent ways in which tranélation control jets
could cause disturbance torques to the satellite attitude, If the line of
action of a translational control thrustor does not pass through the satel-
liie center of mass, the system wili produce torgques which could ffect both
the pointing accuracy and the spin speed. 1In addition, a leak in & pneu-

matic system either at a joint or in a valve could also produce torques.

d, Magnetic torques,

Magnetic disturbance torques are primarily caused by current
loops in the spacecraft and materials subject to permanent or induced
magnetism, The instantaneous torque is the vector cross product of
the spacecraft's effective dipole moment ﬁs and the magnetic induction

of the local field B or

T = ¥ X B . (3.12)

>

Here, Ms is considered to include all but the dipole generated by the
control coils., For a spinning satellite, the inertially fixed torque
will equal the product of the dipole component along the spin axis

and the lateral component of the magnetic field,
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Because the satellite spins with respect to the magnetic field
vector, torques due to the induced currents (eddy currents) and the
irreversible magnetism of permeable materials (hysteresis effects)
must also be considered, Smith [Ref. 3—11] has developed a theoretical
expression for determining the eddy current torques in rotating shells

which is used in this analysis,

The magnetic field assumed for the analysis of these disturbance
torques is modeled in Ref, 3-12, Coefficients used in this analytical

model are presented in Ref, 3-13,

e, Reference frame kinematics,

For a satellite in an earth orbit with inclination i, the

instantaneous orbit precession rate is, to first order,

2
o 3u JZR cos 1 sin2 o]
Q = -4 < 5 . (3.13)
HR

Here; i is the universal gravitation constant times the earth mass, 0,
is the sum of the orbit's argument of perigee and the true anomaly, H
is the orbit's angular momentum with respect to the earth, and J2
is the first harmonic term in the expansion of the earth's potential,
If the spin axis of the satellite is to be maintained normalvto the

orbit plane, a torque, "kipematic disturbance torque,” must be exerted
on the satelliﬁe to precess the spin axis as the orbit normal precesses,
A simple consideration of required rate of change of satellite angular
momentum yields the torque expression

T - O sin i ® 3.14
TK Q sin i Izz . Yk ( )

where §k is a unit vector along the line of nodes,

f, Tbtal torques

To determine the total disturbance torque acting on any
particular cylindrical spinning satellite, a digital computer program

was written to evaluate these five torques, This program computes the
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torques as a function of the parameters which change with orbital posi-
tion of the satellite in its nominal orientation, Examples of iner-
tially fixed yaw and rol} torques were computed using this program and
are presented as functidns of orbital position in Figs, 3-4 and 3-5,
For these examples, the orbit is inclined at 45° and the orbital fre-
quency is 15 times/day. Perigee occurs at 300 km over the equator
which is positioned in the center of the atmospheric bulge, The dimen-
sions and other parameters used for the cylindrical spacecraft of this

example are

length £ = 0,5 m,

radius r = 0,5 m and 0,75 mt (two cases),

skin thickness = 0,1 cm of aluminum,

spin speed = 1 rad/sec,

accommodation coefficients = 0,64 and 0,84 (two cases),
decimeter flux index = 300 and 100 (two cases),
reflectivity = 0.0 and 1,0 (two cases),

spin axis dipole = 0,6 amp mz,

c.m offset from c,p. = 0,5 cm,

jet misalignment moment arm = -0,5 cm,

Such plots are useful for illustrating the relative magnitudes

and characteristics of the various disturbance torques.

3. State Estimation by Filtering Horizon Sensor Data

By proper placement of a pair of infrared horizon sensors (bolometers),
it is possible to measure directly the roll error, 9. Because of the
structure of‘thé satellite's state equations, the system is ''observable."
That is, a filter can be constructed which will produce estimates of
the other state variables from the roll error measurements, To account
for driving noise (disturbance torques) and measurement noise, an
optimum steady-state (Kalman) filter is developed which gives 'best"
estimates of these states, This system is developed as follows,

a, Horizon-sensor determination of roll angle, spin speed, and
orbital rate,

Roll-error measurement can be provided using the output of
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two iufrared bolometers arranged with their optical axes in a ''Vee'

configuration as syown in Fig. 3-6. The optical axes lie in a plane
containing the vehicle spin axis. As the satellite spins, the optical
axes sweep out two conical surfaces in space., The sensors produce
signals related to the change in received radiant energy as optical
axes sweep from cold outer space through the warmer infrared earth,

and back to space again after each spin revolution,

The intersection of these sensor paths with the earth and the
corresponding sensor output is shown in Fig, 3-7, When the spin axis
is normal to the earth-satellite radius vector, the sensor pulse out-
puts will have the same width and occur at the same time for an ideal
spherical earth, If a roll error exists, the relationship among pulses
will be as shown, ZErrors in yaw cannot be instantaneously detected,
However, since the satellite spin axis is approximately fixed in inertial
space, a pointing error in yaw at any particular instant will become
an error in roll 80° 1later in the orbit due to the rotation of the

local reference frame,

The geometry of the horizon sensor scheme is dipicted in rig,

3-8 where
8 = roll error
8§ = half-vee angle
a=90°—6
-1
B .= sin (Re/R)
ti = time between horizon pulses for right sensor
b = local spin rate = wz -f-g
Yy = Yt /2 .
1
The earth sweep time for the right sensor, tl’ can be written
¢ _ E cos—l cos B8 + sin g sin § . (3.15)

1 cos g cos §

Equation 3,15 was used to compute the output characteristics
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FIG, 3-7, HORIZON SENSOR OUTPUT WITH AND
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FIG, 3-8, GEOMETRY OF THE HORIZON
SENSOR SCHEME,
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of sensors with half-vee angles of 3°, 6°, and 9° for an elliptic orbit

having 3 revs/day, Define At and Tavg as

2 1
2 .

(1=

At

where t2 is the time between horizon pulses for the left sensor,

and T é
avg

“b + tf/z. Then Fig, 3-9 shows roll-angle error as a
function of . At for a 9° half-vee angle for various values of
satellite radius., The roll error is found by multiplying At by a
gain (slope of éurves such as those in Fig. 3-9) which is radius de-
pendent, Phis gain, as a funcfion of Tavg’ is shown in Fig. 3-10
for the three sensor angles investigated here, The quantity Tavg
average remains fairly constant at a given altitude for small values
of roll error, As can be seen from Eq. 3.15, the sensors will produce
a larger error signallwith a larger half-vee angle, However, a
trade~off must be made because larger sensor angles will cause the

sensor to miss the earth for high altitudes of highly eccentric orbits,

Because the horizon sensors produce a pulse train, with Tavg
a function of satellite altitude, this output can also be uced fo give
a direct measurement of the vehicle's spin speed and the current orbital

.rate, £ + é, of the vehicle,

b, Kalman filter for state estimation,

The linearized state eqdations of the symmetric spinning satel-~
lite was summarized in matrix form in Eq. 3.4. This equation, as it
stands, is observable from a measurement of the roll error ¢, That
is, with a signal proportional to the roll error g9, a state observer
can be constructed to estimate values of the yaw error ¢ and the two

inertial rates (¢ and ay.
x

It would be nice if the disturbance torques could also be
treated as states and estimated as part of the observer's function.
However, a constant torque about the x-axis (yaw axis) (e.g., aerodynamic
torque) is nbt observable from roll error measurements of a symmetric
vehicle, Therefore, for the time being, it will be assumed that the

disturbance torques can be treated as white driving noise, If it is
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assumed that the driving noise and measurement noise are stationary,
white, uncorrelated processes, a Kalman filter [ Ref, 3-14] can be mechan-
1zed.to determine the linear least squares estimates of Qs ay, and
¢,

The state and observation equations are expressed in general

form as

Fx + Gu + Lv

»
i

(3.16)
Y = Hx 4+ w

where u 1is the normalized control input; and v and w are white

noise with covariances

E(vt)V (1)) = Qb(t - 1)
T
E(w(t)w (1)) = R&(t - 1)
and
E(w(t)v' (1)) = E(v()x (0)] = E[w(t)x (0)}) = O .

Q 1s a positive semi-definite diagnonal matrix and R 1is a scalar
constant, The (4 X 1) matrix x(0) is the value of the state vector

x at time zero, The estimator equations are then

:. ~ ~ "1
X = Fx + Gu + ZHTR (y - Hx), (3.17)

where ¥ 1is the covariance of the error (x - X) which is determined

by finding the steady state solution to the Riccati equation

. -1
£ = FL+ 3P 4+ 1LY - sHRHE . (3.18)

it can be seen by dividing Eq, 3.18 by R that the steady-

state solution of ¥ depends solely on the matrix Q/R. Thus, for
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the amount of work required to solve Eq. 3.18 is greatly simplified.

Equation 3,18 was solved by nuﬁerical integration for a wide
range of the parameter g and the results are shown in Fig, 11, 1In
this plot, [Kl, Ko Ko, K4] = [ZHTR—l:]T, the gain matrix of the
filter, For driving noise with variance v = 10-4 sec_2 and measurement
error W = 10_3 radians, q would be 0,01, The solutions of Fig. 3-11
are for parameter values of D = 1.5 sec“1 mean orbital rate and
n=1,09X 10“3 sec-l, corresponding to the 15 rev/day. Changing n
to 2,18 X 10"4 sec“1 for 3 rev/day, changed the steady-state gains by
less than 2%. Thus, there seems to be no need to use time~varying
gains computed by continuous integration of the Riccati equations to

account for the change in the orbital rate due to the elliptic orbit,

Since the input to the Kalman estimator is not continuous in
nature but comes as a sampled signal, the familiar Shannon sampling
theorem requires that this signal have a sample rate which is at least
twice as fast as the variation in the stafe which one is trying to
produce, The rate terms o; and ay oscillate with a frequency D,
therefore it is necessary to sample at least ZIZZ/Ixx times per satel-
lite revolution, Thus, the horizon sensor heads must either be spun
at least ZIZZ/Ixx times faster than the satellite spin rate or more

than ZIZZ/Ixx sensor pairs must be used on the satellite.

4. Magnetic Attitude Control of the Symmetric Spinning Vehicle,

Given the ability to determine the three unknown states of the
mvehicle attitude, one can proceed to develop a control system making use
of these states, Then, once a control law has been formulated, the
implementation of the required control torques must be considered,

The control problem studied here is that of a regulator, It is desired
to keep the spin axis as ciose as possible to the orbit plane normal

and maintain the spin speed of the satellite within some acceptable

bounds,
72~
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In this part, a new method of magnetically controlling the
attitude of a spinning spacecraft is developed, It will be shown that
this magnetic attitude control system is simple and requires very lit-
tle power requirements for geodesy satellites in orbits between 15° and
75° inclinations, This/ system, possibly supplemented with a passive
nutation damper, thus becomes a strong candidate in any geodesy mission

for which active attitude control is required,

a, Magnetic implementation of the control law,

The desired control torque will usually consist of components
about the roll and yaw axes to correct wobble motion and pointing error
and a component about the spin axis to correct spin speed error. To

implement a torque magnetically, one makes use of the relationship
T = mXB (3.19)

where m is the magnetic dipole created by producing electromagnets
or passing current through coils fixed to the satellite., The vector

B is the local value of the earth's magnetic field and T is the

1

resultant torque,.

Because B has an arbitrary direction (see Fig, 3-12), it is
not always possible to solve Eq. 3.19 for m to produce a desired f.
Thus, it is assumed that the spin cohponent of desired torque is ignored
except in cases where the spin speed has deviafed so far from the

nominal value that corrective action must be taken,
For maximum efficiency, it is necessary to create a magnetic

dipole in the spacecraft normal to the earth's magnetic field at any

given instant, Thus,

m - ﬁ - O . (3020)

By solving Eqs. 3.19 and 3,20 with the assumption that the component

of T along the spin axis is zero, one obtains

m, = (T, B, =T B)/|I§]2

z = Yp X~ XpY

me = (mBy - Ty /B, ‘ . (3.21)
my = (szy + TXD)/Bz ’
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where TyD and TxD are the desired control torques and the subscripts
X, ¥, z on all quantities denote measure numbers in the local (L) ref-
erence frame, Equations3,20 is basic to magnetic attitude control and
have been used in modified form in several méchanizations since appear-

ing in Ref., 3-15,

To mechanize a control system along the lines of Eq., 3,21
requires the measurement of three components of the magnetic field, It
also requires seven multiplications and two divisions, Although this
is complex in itself, the worst problem arises from the requirements for
division by B_ and |B|2. For a highly elliptic orbit (see Fig., 3-12),

BZ alone varies over two orders of magnitude in size,

One method of control mechanization which greatly simplifies
Eq, 3.21 is to set mz = 0 and assume an average value of the spin

component of magnetic field B . Then, for X = l/B ’
z Zz average

mx = —KTyD
(3.22)
my = KTXD .
The resulting actual torque acting on the vehicle will then be
Ty = (KBz)TyD (3.23)
T, = -~KByTyo + ByTy)

The spin torque Tz should average to nearly zero over several orbits

under such a scheme,

Pointing control can also be achieved with the z-coil alone,

If one assumes that the magnetic field B is normal to the required

D’ - -

torque T then
‘ m = K, (B XT.))

where Kl is some appropriate gain, Thus

- - B,.T
mz = Kl (BX TyD y- xD) []
Spin-coil control has the disadvantage that the resulting pointing con-

trol torque is not usually in the exact direction of the desired torque

but has the advantage of creating no undesired spin torques,
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b, Spin control

If the spin speed deviates from the nominal value, this can
be detected by variations in the periodic signal coming from the horizon
sensors, The desired control torque to correct such a deviation Amz

would be

or : . (3.24)

-3
il

—KZ sgn (sz)

when IA“£| exceeds some deadband value., There are two ways in which

this spin control can be implemented,

The first implementation of spin control follows from Eqs. 3.23.
From these it is seen thaf'a spin torque will exist because of the
presence of pointing control. Thus, one might incorporate logic into
the control system such that pointing control is only actuated when

the resulting spin torque is in the desired direction,

The second possible scheme is to apply current to the x and y
coils in such a way that the resulting magnetic moment is normal to the

component of the magnetic field in the X-Y plane. Thus
m = KB sgn(/w)
zZy z
(3.25)

= = B w .
m Kz « sgn (A Z)

c, Complete control logic

The preceding two sections (a & b), can be combined to yield a
control system which provides both pointing control and spin-speed control,

Two constants C1 and C2 are defined which represent boundaries of the

deadbands associated with the spin speed, Let C1 be the value such

that when |sz| > C one should provide some sort of spin control,

1’

Let Cz be the value for which, when ‘szl >C it is mandatory that

2’
spin control action be taken, Then suitable logic governing the currents
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put into three orthogonal coils would be

for: -C. <
or C1

for: C. < Aw < C
z 2

1

if sgn | -K(B T
gn [ Ty

if sgn [-K(B T
gn [ WLy

for: C, < |auw]

<
sz-\ C1 (Mode 1)
mx = =K T
. YD
m = K TX
y D
mz = 0 H
(Mode 2)
+ BXTX )] =
D D
+ BT )] =
D D
= 0
= 0
= K (BT -BT )
17>y R
(Mode 3)

If the gains are set

properly and care is exercised in design and

Ksz sgn(Au;)

- W
KZBx sgn(A z)

Kl(BxT

)

- B Tx )
Y *p

9

sgn(-Au&), use Mode 1;

-sgn(-Aw )

(3.26)

(3.27)

(3.28)

construction of the vehicle, Mode 3 will not be required during normal

operation, However,

it should be provided for use during initial

spin-up or for the case where spin speed changes but no pointing error

accumulates,
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This control mechanization requires the presence of three
orthogonal coils about the three orthogonal control axes., The 2z-cdil
(spin coil) could be provided with a ferromagnetic core so that weight

and power requirements would be lowered,

The control system must also have the abilify to measure the
magnetic-field components, Bx and By when in Modes 2 and 3. This is
done with a two-axes fluxgate magnetometer [Ref., 3~16], a device with
reasonable linearity., The magnetometer's sensitive axes must be
mounted such that no interference is created from the magnetic field
produced by the control coil, For the case where the magnetic compo-
nents mx and my are both being generated, this interference can
best be prevented by a time-sharing procedure. Here, the coil currents
are cut off momentarily once each cycle of spacecraft spin, At this
time the magnetic-field measurements could be sampled and held during

the controlled portion of the cycle,

d, Skewed-coil magnetic control,

It is possible to simplify to a great extent, the mechanization
of the control system suggested in the previous section, This can be
done by replacing the three coils by a single coil skewed at 45° to
the spin axis as shown in Fig, 3-13. A further simplification is to
use only one magnetometer with its sensitive axis along the node of
the skewed coil and the” x-y plane as indicated, Such a magnetometer
would not require time-shared measurements. For such a system, if the
current in the coil is constant, an average magnetic dipole moment is
generated along the spin axis, If a constant current has its direction
switched every 180°, the average magnetic moment is in the x-y plane
pointing in the direction 90° from the switch points, Thus, one has the
ability to generate all three components of the desired magnetic dipole
m averaged over a spin cycle of the satellite. A disadvantage to such
a system is that it can only generate the average required magnetic
components in the x and y directions over one cycle. Thus, it does
not have the ability to generate control‘forces which fluctuate faster
than spin rate such as wobble damping terms, Therefore, the skewed-

coil must be supplemented with a nutation damper, At any rate, the
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packaging advantages of a system with a single coil and magnetometer

seem to make the skewed coil mechanization worthy of coénsideration,

e, Minimum power optimal pointing control,

The normal mode of operation of the magnetic control system
will be Mode 1, It is necessary to specify what the desired control

torque components T and T are for this mode and what appropriate

X
gains should be, A rgasonabig criteria for selecting the control torques
to be applied is to choose TXD and TyD which yields the response
desired and minimizes the power used to achieve this. The expressions
for the idealized pointing control torques will now be presented

below,

Power consumptioﬁ is proportional to current squared and the
magnetic moment of a coil equals the product of the current, the coil
area, and the number of gurns of the coil. Thus, for a single coil
one should tfy to minimize the control current squared, For two
orthogonal coils, minimum power is obtained by minimizing the sum of
thc sqguares of the coil currents. Thug, the optimization rroblem.
considered is that of minimizing the performance index J subject to
the system differential equations 3.4, where

te
J =_£ (qlai + qlaf, + 05262 + qchz +-T123x + le)y)dt .

For a fourth-order system whose equations of motion have
complex syﬁmetry, the solution of this problem is well known (e.g.,

Ref, 3-17) and yields an optimal control of the form

TDx = _KV ¢ - Kpl ¢ - sz e
‘ (3.29)
TDy = —KV 8 + sz ¢ - Kpl e s
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where the three coefficients of Eq., 3.29 are solutions to the equations

3 2 2 2 2
2(Kpl) + (D + 2Dn + n” 4+ d 4 ql)(xpl) + g(anl - qZ)Kp

1
2 2 2
- (d d =
( q, + d'n q + qlqz) 0
(3.30)
2 ]
K = ~d + 4/d
v ~/ + 2Kp1 + q1
- dn dn)2 e 2 _ 1
sz n +J( n)< 4 q, (Kpl) 2DnKpl .

The solutions to Eq, 3.30 for D = 1,5 rad/sec, n = 1,09 x 1073 rad/sec,
ql = 0, with q2 treated as a parameter are shown in fig. S-Ifi
The nutation damping coefficient, d, is varied from 10 to 10 .,
Changing the mean orbital rate, n, to 2,18 X 10-4, corresponding

to a 3 revs/day orbit had no markable change on the solutions, The
choice of actual gains to be used for power minimization depends upon
the coefficient of the nutation damper used and the response desired

which is determined by choice of the parameter g -

f, Stabiiity coumsiderations

In the previous section, gains from minimum power control
were determined with the assumption that the resulting idealized torque
would always be mechanized exactly, However, using the simplified
control mechanization specified in Eqs. 3.26, 3,27, and 3,28, one
would only be able to actuate the coils to produce control torques which
would be optimum in some average time sense, For instance, if Eq. 3.26

is being used and the gain K is chosen as the average value of l/Bz,

then the actual control torque produced varies considerably from the
"optimum," It is known from optimal theory that the optimal gains,
when mechanized exactly, will result in a stable system, But when
the actually mechanized control torques are time varying, depending
‘upon the time history of Bz, the quéstion of stability remains
open. The subsequent discussion is intended to be a summary of the
stability investigation, A more detailed development may be found in

Ref, 3-19,
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Consider the case of the skewed~coil controller, Let the
damping terms of Eq., 3,29 be lumped in with the nutation damper so

that the desired magnetic torques are

TD = _Kpl 4’ - sz 9
X
(3.31)
TD = sz ¢ - Kpl 6 .
y
From Egqs. 3.23 and 3.26, the actual position control gains are
= - K "B
Tx K(Kpl ¢+ 2 6) Z(t)
(3.32a)
= —Kl(t)(Kpl¢ + sz 8);
Ty. = -K(-Kp2 ¢ + Kpl 8) B, (t)
(3.32b)
= - t - .
Kl( ) ( sz $ + Kpl 8) ;
where Kl(t) = KBz(t). Substituting Eqs. 32 into Eq. 4 yields
P-'.ﬁ p—— _ T r—-— —
Q, d -D Kl(t)xpl Kl(t)Kp2 o
a D -d K, (t)K -K_ (t)X o
y _ 1 p2 1 pl y (3.33)
¢ - 1 o 0 _ n T .
6 o 1 -n 0 6
L —t L -t e I
One must determine what range of Kl(t)' can be allowed and yet be
assured that Eq. 3,33 remains stable,
Referring to Fig., 3-14, it is seen that sz >> Kpl’ so replace

Kl(t)Kp2 by K and Kl(t)Kpl by zero in Eq. 3.33. Then, one can
proceed to determine what value of the constant gain K would cause

the resulting system to be unstable,

For the values of d and n, typical of the satellite considered

here, application of Routh's criteria produces the approximate condition
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Dd > K (t) . (3.34)

Equation 3,34 gives an approximation to the upper limit on Kl(t).
As a more rigorous approach, a Lyapunov function has been constructed
which demonstrates asymptotic stgbility for Kl(t) ;ess than an upper
limit agreeing very well with Eq, 3.34, The system is stable for

kl(t) < 5.398, for example, using the Lyapunov approach with parametric

values,
D = 1.5
-2

d = 1,26 x 10

n = 1.09 x 105
K - 2.85 x 10°°
pl
K = 3.5 X 1073 )
p2

Again, the time variation of orbital rate has only a slight

effect on the results,

A method of determining the limits on the allowable position
gain has now been established. Suppose one sets the gains of the-
control system so the system is optimal for the average magnetic field,
Then the previous technique determines whether or not stability is
maintained over the entire range of magnetic field variations for that
particular orbit. The average magnetic field for an orbit can be found
from plots such as Fig, 3-15 taken from Ref., 3-18 by using the semi-

major axis as the average radius,

One must also investigate the stability of Mode 2 control,
i,e,, the situation when only the spin component of the magnetic moment
is used for pointing control, Consider again the case where the magnetic
control is for position control only, By requiring that the average
magnitudes of Q&, ay, 6, and ¢ be always decreasing, one can obtain the

condition

x y . '
>
d 5D (3.35)

2 2
and Kpl = 0 for all (Bx + By ) of the orbit., The spin magnetic

moment during Mode 2 and 3 control should then be
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mo o= K]_Kle; 9B+ GBy] (3.36)

/

where Kl is chosen so that Eq. 3.35 is satisfied,

g. Simulation results,

Throughout this study, analog and digital simulations of the
system have been made to verify the analytical results., A brief summary

of some of the findings of these simulations will be mentioned here,

In deciding to use a state estimator as part of the control
system, it was necessary to compare the system response with that which
would occur when no estimator was used, Without an estimator the

magnetic position control could be

(3.37)

where ¢ 1is the roll error signal coming directly from the horizon
sensors, This control would, of course, be supplemented with a

nutation damper,

Assuming, the exact control torque is applied as specified by
the control laws 3.37 and 3.31, the response times were compared for
driving the states to zero from a variety of initial conditions., For
the cases considered, the system with the estimator was found to be
all the way from equally-as~fast to twenty-times-as-fast as the system

with no estimator,

This speed of response has two advantages., Because dis-
turbance torques are going to move the satellite spin axis away
from normal to the orbit plane, fast response means that the average
deviation is less., Also, because the control torque depends
upon the magnetic field available (which fluctuates considerably in
elliptic orbits), it is desirable to apply control when the magnetic

field strength is sufficiently high, However, without an estimator,
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the detectable error (roll component) might only be present when the
magnetic field strength is low, Thus, without an eétimator (which
serves as a memory of the error), it could take much longer to drive

the system to the null position,

Analysis and simulation showed no advantage of the estimator
for offsetting a steady state yaw disturbance torque, But éince actual
disturbénces (see Figs, 3-4 and 3-5) are fluctuating, the advantage
is realized., The steady state error due to a constant yaw torque is

approximately ¢ = Tx/(Dn) where Tx is the normalized yaw torgque.

Other points studied by analog simulation were the effect
of putting a sampled signal into the estimator and using the constant
parameter n in the estimator equations rather than a time-variable

f + &. Comparing a sampled input signal with the continuous estimate
of the roll error é causes no problem if damping is done solely by
nutation damper, But such a mechanization causes the estimates of the
rate terms &x and &y to have a phase lag behind the actual rates,
The lag angle depends upon the speed of sampling, Figures 3-16a, b,
show the response of the rates o& and 6? when sampling rate is four
times per second, It can be seen that damping is poor and finally
nonexistant when a& goes to zero, This problem can be rectified
either by sampling é before comparing with the input § or by
putting a lead angle in the rate damping control signal, If &;

“and d; lag ax and ay by an- angle A, then the damping control should

be
T = -K (cosAa - sin AQ)
D v X y
p’S
: (3.38)
TDy = -—Kv(sin A&x+ cos Aay) . )

Figures 3-16¢c, d show Q% and &x using Eq. 3.38 with A = 60°,

An uneven response was the effect of using a constant n in
the estimator instead of a variable £ + é« (which is available from
the horizon sensors) to account for orbital rate, The trajectories
followed by'the satellite spin axis were highly dependent upon initial
conditions in such cases and often resulted in limit cycles about some

point near the origin, No evidence of (instability) was seen from this
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condition, however,

A final point which required investigation was the performance

of the system during Mode 3 spin control, It can be shown that to

keep the pointing error as small as possible due to the spin control
torque, this torque should be applied over a 180° .segment of the
orbit, For greatest efficiency, this segment should be centered about
the perigee point, To check the spin correction performance of this
control and also observe the effect on the pointing error, several
digital runs were made with the actual magnetic field and realistic

disturbance torques included,

Figure 3,17 is an example of the response of spin speed, roll,
and yaw errors during Mode 3 control of a 15 revs/day orbit, For

this example, the magnetic moment components are

5 )
= -10 s
m By gn(sz)
5
m = 10 B sgn(/Aw)
v p'e z
6
m = 3,5 x10 (¢B + 6B)
z x y

2 .
measured in Amp - m , The magnetic field components are in Webers/mz.
-1 -
The parameters d and D were 00,0126 sec and 1.5 sec l. These runs

were based on boundary constants between Modes 1, 2, and 3 of Cl =

0.0l rad/sec and C, = 0,02 rad/sec with nominal spin speed of one rad/sec,

2

B. TRANSLATIONAL CONTROL MECHANIZATION
- FOR SPINNING SATELLITE

The function of the translational control system is to keep the
satellite centered about the proof mass in the presence of disturbing
forces. This is accomplished by actuation of gas jets based on an
error signal derived from the position of the proof mass with respect
to a null point fixed in the satellite, As previously pointed out,
spinning the satellite attenuates the problem of placing this null

point where there is zero mass attraction of the satellite on the proof
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mass, Hence, spinning makes possible improved performance; however,

it modifies the mechanization of the translational control, Assuming

a linear controller, Lange [Ref, 3-20]showed that a simple correction
term can be added to the controller for a non-spinning vehicle to
stabilize a spinning vehicle, A practical mechanization of this has
been simulated on analog and digital computers and built in our labora-
tory simulator, Under controlled conditions, this mechanization works
‘very well; however, stringent requirements on the electronic tolerances
and the mass—center/null point alignment are necessary to prevent a |
certain phenomenon which we call "trapping', Accordingly, control
mechanizations have been investigated which will alleviate the trapping

problem in the simplest way possible,

The Trapping Phenomenon

The existing control mechanization for the two-degree-of-freedom
laboratory simulator consists of pulse-width pulse-frequency modulators
with deadbandé and lead compensation in each axis and the W X P cross-
coupling terms, The deadbands along each body-fixed axis create a

square deadspace in a piane, 1In Fig, 3-1i8 below, liines of control

’ e
(\ v
L /#/)///
* w ex
1 —
T s s et
dy ¢
B
4 —
pacr— —
X
pickoff null
center,

FIG. 3-18, PLANAR DEADSPACE
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direction are sketched in the first quadrant around the deadspace,.
Note that in the vicinity of the deadspace corner, fhe force is in the
wrong direction except on the 45° 1line (it should point towards

the origin)., This fact, coupled with small errors in deadspace square-
ness, cross-coupling terms, or mass—cgnter alignment gives rise to
control-force directions sufficiently erroneous to cause the proof
mass to become trapped near a deadspace corner, Because the satel-
lite is spinning, the mass center (origin in Fig, 3-18) is describing
circles in inertial space, This state is stable and the control force
continues with just the right direction and magnitude to balance the
centrifugal force of the mass center's circular motion, thus wasting

propellant,

The point where the center of the proof mass becomes trapped is
readily calculated by assuming the control force is linear after
crossing the deadspace threshold, The control law given by Lange
[Ref, 3-20] is modified by the square. deadspace yiélding an expression for

the control error signal valid in the shaded region of Fig, 3-18 as

follows:
ex = X + y(x - wy) - dx (3.39)
e = y+ 9y +wx)-d ' (3.40)
y Y )
where -
¥ é rate gain/position gain
é vehicle spin rate
@ , dy) é deadband parameters .
X

The approach taken is to assume the vehicle is in the trapped state
(observed experimentally on the laboratory simulator and duplicated on
the analog computer) and to look for points which will maintain it,

Th; observed limit cycle consisted of constant values of ex, ey,

x, and y with %X = y = 0, Constant x and y imply the center of

mass is traversing circles in inertial space if it lies anywhere other
than at those values of x and y, Maintaining this state requires

control action in the direction and magnitude to provide the centrifugal
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acceleration of this circular motion.

Assuming the center of mass (c,m,) is located at (xe, ye), we are

looking for a point (x,y) where

€ y -y

1) zi = ;—:—;E (directiog requifement)

2? K.,/ eg + e? = ;JQX —x)g + (y - ye)z" w: *m, (::§Si§:::nt)
Kp = control force gain,
w,oo= actual vehicle rotation rate,
moo= vehicle mass,

The direction requirement, coupled with equations 3,39 and 3.40 with

X = & = 0, yield a circular locus of points with center at

2 2
d - ywd - 1
v ywd (7w+)ye

= = .41
®x xc ' 2wy (3 )
- N —(72w2+1)xe
= = - 3,42
ey eyc 2wy ( )

and radius = /e2 + e2 . (3.43)
xC yc

Similar expressions can be derived for the other three possible

quadrants, .

Trapping will be maintained at some point on the circle if there is
a portion»of the circle in the assumed quadrant (ex > 0, ey > 0), since
values of Kp are typically large enough to satisfy the magnitude re-
quirement, A portion of the circular locus appears in the assumed

quadrant when

A\

e > 0
Xc

or : (3.44)
d wd ¢ 2w2 1) >0
y bé x Y + ye .

In the laboratory simulator, yw = 1 and with X, =V, = 0 and
d = d (square deadspace) there is no solution, However, dy > dx
x y o
or y, < 0, x, = 0 yield solutions,
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The influence of the term yw 1is interesting:

yw < 1l: there always exists a trapping'solhtion in some quadrant
' even with a square deadspace and no center of mass error,

yw > 1l: the requirement for perfect squareness diminishes, How-
ever, the affect of c¢,m, error is amplified by the
factor (y2w2 4+1)/2yw-,
It is also interesting to calculate the c,m, displacement (y ) at
M e

which the trapping locus just appears: assume a square deadspace, i,e,,

then the locus just appears when

d - ywd - (72wz + l)ye = 0
or ) (3.45)
E_-l—'yw
d 72w2 L1

Differentiating this expression with respect to yw and setting equal to

R . C s . * -
zero yields a maximum permissible excursion (ye ) with a perfect square

deadspace
y*
e
= = 0,206
~for -
ryw = 2.4 ,

With a circular deadspace, the solution is no longer quadrant

dependent, and the locus of possible solutions is again a circle

2w2 1
- (Z____+_.> Y,

center: b4 =
[¢] 2@)7
2 2 1
y = y w o+ 1 x (3.46)
c 2wy - e
radius: r = 2 2 .
X + ¥y
c C
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The requirement for trapping is that the above circle diameter exceed

the deadspace radius, Hence, the ratio of allowable center of mass

excursion (rém) to deadspace radius b is given as
r
rc“‘ = .2;” . ) (3.47)
db wy + 1

Again, the maximum permissible center of mass excursion (F*m) is readily
c

calculated
* .
Tem _ 1
) rdb 2 _
at (3-48)
7’(,0 = 1 .

Analysis of an octagonal deadspace follows along similar lines as

the round and square deadspaces and yields

Yo
= = 0.45
at : , (3.49)
yw = 2

2, Control Mechanizations Investigated

Basic ideas considered for the elimination or attenuation of the
trapping phenomena have centered around modification of the deadspace
shape and introduction of state estimation techniques, Desirable
properties of estimators include

(a) noise attenuation,

(b) ability to estimate c,m, position (%o, ¥e) and control to it,
rather than sensor null, v

(¢) high bandwidth enabling simpler modulators,

Susceptibility to trapping is affected by (1) center of mass dis-

placement from the sensor null point (xe and ye), and (2) errors in

-97-



mechanization of the control law, Results of analysis of the first
category (carried out in Section 1 above) are given in Table 3-1,

The maximum values of the/allowable excursion are tabulated along with
the value of +yw which pfoduces the maximum, Trapping, however, is not
the only consideration in selecting the best value of yw for a control
system design, The value of y (rafe gain/position gain) must be
compatible with good control system performance in the presence of large
disturbing forces and large initial conditions. The angular spin rate
(w) 1is influenced by attitude control and mass-attraction averaging
considerations, These factors may dictate choice of a yw value

allowing less c.m, excursion than that tabulated,

Mechanization errors arising from component tolerances and ampli-
fier biases typically cause control signals to be off about 10% of
full scale or about 20% of the deadband., This translates roughly
one to one into an equivalent c,m, excursion, hence, a system could be
on the verge of trapping from mechanization errors alone if a square

- deadspace was used,

Table 3-1 also indicates relative complexities of the systems
without compensation or estimatoir, The primary factor making systems
C).and(:) simple compared to other schemes is the square deadspace, -
Overall system complexity is a strong function of the estimator con-

figuration which will be discussed next,

3. State Estimation Techniques,

If a dynamical system is thought to obey the set of system equa-

tions

X = Fx + Gu

11>

state vector,

constant matrices,

[ NG
Nt
e

e

known control vector,
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an "estimator' or "observer" for this system is

é = FX 4+ Gu + K(y - HX) . (3.50)
where
' g estimated state vector
K ﬁ‘ constant estimator gain matrix
& ﬁ measurement vector
H ﬁ coﬁstant matrix,

When the measurement vector is also a state, the estimated state vector
need not include these states and Eq. 3,50 is somewhat modified. This
is sometimes referred to as a '"reduced state observer'" or 'minimal-order
observer', Recent references covering the theory of these state esti-

mation techniques are Ref, 3~-21 and 3-22,

The normalized translational equations of planar motion of a

rotating body in body coordinqﬁes may be written

e 7 [~ aAr N ~ B c ~ =
X . |10 0: 1 0 x 0 0 {} 0
x
. c
y 0 0 0 1 y 0O O [fy 0 (3.51)
= + +
. 2 d 2
v w 0 0 s2wjlv l1 O f - wx
X x X e
v 0 W -20 0|V 0 1 £9 - 2 ye
where
A ‘ ' ,
X,y = position of mass center with respect to inertial space,
vx, vy g time rate of change of position,
c c .
fx, fy = control accelerations,
w g spin rate,
d d
fx, fy £ disturbance accelerations,
xe, ye 2 center of mass displacement,
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If we assume

(a) disturbances and c.m, displacement negligible (fd - wzx = 0,
. X e
etc,) /
(b) x,y are measured directly, N
then, one of the most simple examples of an estimator is example QD
in Table 3-2,
2T Mzl (o)l T ]
0 0
X 0 1 0 Kl1 K12
¢ 0 o 1||% 0 X - X
y y Ko1 %22
~ (3.52)
b ~ c y-yv
w W i
'vx 0 2 vx fx K31 K32
,’\ 2 ~ C
v 0 -2w O A f K K

d .
If £ and c,m, displacement are not negligible, errors will be present

~ A
in the estimate of the states (X and V). If these errors are not accept-
able or if we desire kncwledge oi the unknown quantities, then the

" state vector is augmented with these errors as constants to be estimated.

The estimator equations then become (example () in Table 3-2)

—eo F n f—A"’ - — M

R 0] 1 0 0 o0 X

v 0 0O 1 o0 o ¥ 0

A 2 ~ ~

vx wz 0 2w -w 0 Vx ; X - X

. 2 + + 1 K (3.53)
¢ 0 20 0 0 -w \ ¢ X -3 y
y y y

b 0 o 0 0 o© 2 0
e e

$ 0 0 0 0 o vl

A reduced state estimator with a revised state formulation can also be

mechanized for this system,

If we define
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TABLE 3-2.

COMPENSATION/ESTIMATOR SUMMARY

c,m,) estimator

Electronic C.M. Number of
Description Noise Tolerance Tolerance Operational
ptio Rejection Requirements Requirements Amplifier
lead compensa- bad best see Table 3-1 2
tion .
bo
4-g .
s?ate (x, v) best good see Table 3-1 6
estimator
©
-st
2 q'ate v3 good bad see Table 1 4
estimator
{reduced stiate)
4—s?ate (v, c.m.) good bad best 8
estimator
(reduced state)
®
6-state (x, v, best good best 8
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<

inertial velocity in body coordinates,

<
1{=9
l<-
+
£
b

(= [— — [~ “
1
% | 0 wll ol [« ] o o |z,
I
Y :w_gifui_ v 0 o |y
vi| o oto w + 11 o0 (3.54)
X H X ¢
. 1
0 olw o} |V 0 1
L Y L ! LY L

The system matrix of Eq. 3,54 is partitioned as shown in line with the

states being directly observed, This defines the following submatrices:

- A0 W
I =
11 o
a [1 0]
Fio = Ki1 Kio
0 1] A
L = estimator gain
a [0 ) K matrix
F22 = . K21 22
- Q
. A )
6, *° [1 0
: 0 1

and the reduced state estimator in block diagram form coupled with a

simple pulse modulator is as shown in Fig, 3-19,

This estimator/modulator configuration is the rotating vehicle
equivalent of the derived rate controller in common use today [Ref,

3-23].

Other estimator forms considered include variations of the state def-

initions as well as the number of states being estimated, 1In addition,
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FIG, 3-19, ROTATING VEHICLE DERIVED RATE CONTROLLER

various mechanizations are possible for a given estimator form, For

the subtraction of [(x - §) and (v - ?) in full state esti-
mators (e.g. Egs. 3.53 and 3,54) can be performed in a separate amplifier
or in each integrator of the system, A vector block diagram illustrating

this mechanization difference is given in Fig, 3-20, a and b,

Results of the analysis of the different forms and mechanizations
can be summarized as follows:
(1) State redefinition so that the error signal is a state:

(a) reduces errors due to component tolerance
(b) reduces number of amplifiers required;

(2) Mechanizing extra amplifiers for computing the difference
between measured quantities and estimated quantities in
full state estimators substantially reduces errors due to

component tolerances;

(3) Reduced state estimators are inherently sensitive to componeht
tolerances because the step suggested in (2) above is not
possible,

Table 3-2 summarizes some of the characteristics of various

estimator forms and lead compensation., All the estimator forms share a

common characteristic response to a control pulse, The control signal is
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FI1G, 3-20a: ESTIMATOR WITH SUMMATION AMPLIFIER

4

x———2 K J

FIG, 3-20b:; ESTIMATOR WITHOUT SUMMATION AMPLIFIER
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fed into a veloéity state integrator essentially duplicating the response
of the actual dynamical system, Thus, one could say the bandwidth of the
response to a control pulse is infinite., This is fundamentally different
from lead compensation which relies on sensing a change in velocity from
observed position data., This high bgndwidth to control pulses allows

use of simpler modulators with estimators,

4, Co&clusibns

Utilization of a square deadspace appears marginal even with per-
fect c¢.m, location, eliminating schemes with square deadspace ()

and @ in Table 3-1,

Two desirable characteristics of the estimators are (1) noise
rejection, and (2) ability to estimate c,m, location and control to
it, rather than to sensor null, thus relaxing the requirement of physical

control of the c,m, location,

If an estimator is required, systems utilizing the high bandwidth
to simplify the modulator appear to be the logical choice (schemes
(& and & over Ga in Table 3-1), Although lead compensaticn may ke
adequate from a noise and c,m, standpoint, its selection over a simple
estimator form (such as (:) or () in Table 3-2) is not immediate, The
additional complexity in the modulator required when using lead compensa-
tion is balanced by the additional complexity of the estimatof. This
‘choice essentially reduces to pulée—width pulse-frequency or ''rotating
derived rate'., Unlike l/s2 plants, where the derived rate is clearly
the simpler controller, the rotating plant requires additional complexity

in the estimator making the choice an even one, -

Mechanization of a system with circular deadbands, lead compensa-
tion, and a p-w p-f modulator (scheme (:) in Table 3~1) on our laboratory
simulator is nearing completion, This should allow verification of our
analog and digital simulations of the system, In addition, a six-state
estimator (Form (:) in Table 3—2) is being built for substitution in place
of the lead compensation (thus producing scheme C) in Table 3-1), This

will provide laboratory verification of the estimator concept.
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C. INTERACTION BETWEEN TRANSLATIONAL CONTROL AND
GRAVITY STABILIZED ATTITUDE MOTION

/
This section gives attention to the analysis of a phenomenon which
can occur with a drag-free gravity—stabilized vehicle, This situation
could arise, for example, if the currently planned GEOS-C geodesy
satellite was to be made drag-free by the addition of an "add-on drag-
free device'. The phenomenon is the possibility of attitude instability
as a result of coupling (or interaction) between the translational

control system and the gravity stabilized attitude motion,

If the pickoff null and satelfite mass center are not coincident,
the pickoff interprets attitude motion of the satellite about the mass
center as a change in the position of the proof mass, and the control
actuators are commanded accordingly to null out this position change.
If the actuators can exert a moment about the satellite mass center,
then there is the possibility that attitude motion itself can generate

attitude torques in such a way that the system is unstable,

1. Nonlinear Equations of Motion.

Consider a rigid, gravity-stabilized Drag-Free Satellite to which
there is applied a collection of translational control forces, ZFJ, where
the subscript j denotes the jth control actuator. If ﬁc_ denotes

the position vector of the satellite composite mass center (c) with

respect to the proof mass (pm) [Fig., 3-21], we can then write

2
d - 1l |- - 1 -pm 1 -
—= R = —I|F_ 4 ZF.] - — F + —F_ . (3.55)
dtz c-pnm n% {G J mpm mt D

In Eq. 3.55, F and Fgm, denote respectively, the gravitational forces
G .
acting on the satellite body and on the proof mass, FD is the collection

of external disturbance forces on the satellite, and m, and mpm denote

respectively the masses of the satellite and proof mass.

For the relative acceleration between the satellite's mass center,

¢, and the proof mass, pm, due to the gravitational forces, one has

-107-



Proof Mass.(pm)

R
pk-pm c-pm

g

Pickoff NulK
. {pk)

Satellite Mass Center {c)

=hq’

FIG, 3-21: GEOMETRY OF THE PICKOFF NULL, SATELLITE
MASS CENTER, AND PROOF MASS.

-108-

G Aowas (=24



G FG Gm@ _ Gm(B _
m, m - 773 Rc + 73 Rpm
t pm R R
c pm
3
R
= wz R —£ -1 - 2§.
o pm R3 o c-pm
pm

where m@A denotes the mass of the earth, and w is the (constant)
o

orbital angular velocity'of ¢ about the earth.

- A A A
m_G - ﬁ ~ —wiRC_ e [1 - 3R_R m] (3.56)
¢ om P pm p

. .
where T denotes the unit diadic and ﬁ n is the unit vector in the

direction of ﬁ (ﬁ 4 R /R ) .
pm\ pm pm’  pm

To write the scalar equations of motion of the Satellite, let
. q ’

(9\1 = (/9\- 3 ’6\ ’
N 1 2

centered at [Fig. 3-22]; @1 is the unit vector in the direction

53) be a set of reference orthogonal unit vectors

from the earth's mass center to ¢, G is the unit vector in the

3
- A
direction of the orbital angular velocity wo, and 92 is such that
@2 = 53 X 51 . {8} is rotating in space with angular velocity
ao = w053' Let (N} = (nl; né, n3) be a set of orthogonal unit vectors

centered at c¢. and fixed in the satellite, The orientation of (N}
is such that it is coincident, at any instant of time, with the principal

inertia axes of the satellite,

Any orientation of the satellite with respect to the reference
frame {5} is obtained by aligning {ﬁ} with {8] and then performing
three successive right-hand Euler rotations as shown in Fig, 3-22: 61
about the axisAaligned with ﬁl’ 52 about the new direction of the axis
aligned with Ny and 93 about the final direction of the axis aligned

with n_. This set of rotations produces the so-called nonclassical

Euler angles.

N ~N
The relation between the unit vectors Qj and n, (i=1, 2, 3)

can be immediately obtained as
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Proof Mass

Satellite Mass Center (c)

! N /6\ /6\ A
91, 9 g " Orbital
~ A ~ .
n n n,_ : Body-Fixed

1’ 2’ 3

&

Earth Mass Center

FIG, 3-22: GEOMETRY OF THE ORBITAL AND BODY-FIXED
REFERENCE FRAMES,
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91 cosezcose3 i —cosezsin93 i sine2 ?
s |
92 = coselsine3 + sinelsin9200593Ecoselcose3 - sinelsinezsinesE-sinelcosez x
! !
. . - . [ . . |
93 51n6151n63 0059151n92c0593:51n91cos93 + c056151n6251n93:coselcosezJ
L J L 1
~ A T A~ -
1 n1
A\ é Ve
X181 =C| " (3.57)
| "3 ] | "3 ]
By noticing that
= X
c~pm 81 + Yez + Ze3
(3.58)
F 2 £ 0 +f.n 4+f.n
J ji'l j2 2 j3'3

‘and by expressing the left hand side of Eq. 3.54 in the coordinate system
(5], the three following scalar equations describing the translation motion of

¢ with respect to proof mass in the absence of external disturbances, FD,
are obtained

- ’

" . 2 . , .
m [X-Zon—Bon] = Z[ﬁfjlcoses - fJ_231n63)cose2 + ijSanZ]

mt [YJ“zon} = E{fjl (sineacos 92+c039351n628 in 61)+fj2(sin93sinezsin 91--cos9 3cos 61)

- fj3 cosezsine;]
. 2. '
_ . . ~ . . £ . . .
mt{Z+woi] z j1(51n6351n91 0058351n62c0561)+ j2(51ne351n92c0561+c058331n61)

+ fj3 cosezcosel] . (3.59)

~

- th
If r.(= a + + rj3n3) denotes the vector from the j trans-

r. r_n
J J11 j2 2 _ _
lational control actuator to ¢, the moment Tj about ¢, due to Fj’
is then
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)a

Yn. + (r. . F. -r _F.)n r F_-r F
( 51532t 50507750 51775

J3 jl

A A A ~
=T  n 4+ T _n 4+ T, .n o N (3.60)

If Il, 12’ and 13 are the three principal moments of inertia of
the satellite (excluding the proof mass, which never touches the satellite),
application of the angular momentum principle gives the three following

equations, describing the rotational motion of the vehicle about ¢

o 2
- h = - i i
L0, + [(I3 12)w3+ ]wz 3wo(I2 13)51n920056251ne3-+z:le
[ ] 2 .
- -h]w, = - ; y
1w, + [:(I1 13)w3 ]wl 3w (I, 13)s1n92c0592c0593-+§:I52 (3.61)
1.0 (I -1 ) w w o 3w2(1 -I )c0526 sind cése T
373t T2 T Tt pSin0gcos8y +3 T g

In Eq. 3.61, w , w_, and w, are the three measure numbers of the

1’ 72’

‘components of the angular velocity of the satellite (with respect to
inertial space), expressed in [ﬁ}, and h is the constant angular
momentum (with respect to the satellite body) of a yaw coupling rotor

"connected to the satellite in such a way that h = h33 .

The expressions for wy in terms of the attitude angles ei

(i =1, 2, 3) are

wl = (éz + w;)sinel)sine3 + (élcosez - wocoselsinez)cose3
w, = (éz + wosin91)00563‘— (élcose2 - wocoselsinez)sineé (3.62)
w3 = éS + élsinez + woc0591c0592 .

2. Measured Quantities, Control Forces, and Torques,

The quantities sensed by the proof mass position sensors are the
three measure numbers of the components of the vector from the "pickoff
null" (pk) to the proof mass (pm). Let gy gz, and g, denote the

three measured quantities (i.e., R

]

pk-pm = &3y * Epfp + E3ng) and
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el’ 32, and e3 Atﬁe three measure numbers of the component§ of ﬁpk—c
expressed in (N} . Then
Rpk-pm =, Rpk-—c + Rc—pm

and it follows that

rgl“ ”el“ X

- : Ty (3.63)
gz = €g + .
_gs__ L—GS‘_ L.Z._.

where the superscript T denotes matrix transposition, The quantities

1 o and eé can be thought of as bias in the pickoff signal due
to non-coincidence of the piékoff null and the vehicle mass center,

€,1 €

The three measure numbers f'i (i =1, 2, 3) of the control force
appliesd tc the .satellite by the ith  control actuator are assumed,
for purposes here, to be linear functions of the sensed quantities and

their rates,

iji = —‘kpgi + kvgi) (3.64)

where kp and kv are '"position” and "'rate’ gain constants respectively,

For the measure numbers of the control torque, ETj, a linear

felationship is assumed of the form

B B3
jl jl
T = :
z 52 L Esz (3.65)
ETJ%J ij3

where L is a constant 3 X 3 matrix of effective force moment arms
about the satellite mass center, ¢, and is generally non-zero due to

errors in alignment and physical constraints on placement of actuators.
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3, Equilibrium Orientations and Positions

To determine equilibrium solutions of Eq, 3.59 and 3.61, assume

6. = constant é '9, (i=1,2,3)
i ie
X = constant Q Xe
(3.66)
Y = constant é Ye
)
Z = constant é Ze .

By substituting Eq. 3.66 into Eq. 3.59 and 3,61, and by assuming
that all quantities in Eq. 3.66 are "small" (so that products of small
quéntities in Eq. 3.59 and Eq. 3,61 may be droppgdL yields the equili-

brium solution

= = b= 0
ele e2e 93e
Xe = =g 1
(3.67)
Ye = 7€y
Ze = “~egqg .

o 2 R
Also assumed in this solution is that |k l >> 3wo mt’ (i,e., the
P
translational control natural frequency is very much higher than orbital

frequency) a condition actually satisfied in practice,

Equations 3,67 simply state that in equilibrium, without external
disturbing forces, the proof mass is coincident with the pickoff null
and the body principal axes and aligned with the orbital reference

frame,
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Stability

To a first approximation, the measured quantities 8; 1,2,3)
can be expressed, from Eq, 3.63, as
gl-1 Xs 0 e:3 6:2 els
o) - 0 3.68
€2 s |'F |73 €1 | | %2s (3.68)
' - 0
€3 Zg €2 79 935
where the subscript s denotes a perturbation from the equilibrium
solution,
Assuming that there are two translational control actuators for
each axis of the satellite, mounted in opposition to each other, the
matrix L can be written as '
s = 01
~3 2
= 0 -4 3.69
L Lq 1 ( )
- A 0
22 1
e o

Linearizing Eqs. 3.59 and 3,61 about the equilibrium solution given

in Eq. 3.67, and writing the result in the Laplace transform domain
(leaving out initial conditions) after taking into consideration that

lkpl >> 3w§ mt, the following equations of motion are obtained
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Equations 3,71 and 3,72 represent the full six-~degree-of-freedom
system for small motion about the equilibrium solutions given in Egs.
3.67, It is obvious from the equations that the parameters €, €2’.€3
(pickoff null offsets from the saﬁellite mass center) and 51’ 22 ES
(effective moment arms of the control actuators about the satellite
mass center) cause coupling between the equations of translation and
attitude, The stability of these equations as a function of these

parameters is the primary interest here,

To simplify the analysis initially, assume that e3 and 33 are zero

and investigate stability of the motion in the plane of the orbit, The

equations for this may be written

2 2
I 28 w I _st3w™ (I
[ s+ 284 s o(

3 ol “1)) 4 (esk ) Upe aboe )] 65

2 17172

+ (kp + skv)‘(les - szg) = 0

(3.73)

1l
]

2 /
k - -} k k }|6
(mts + skv + p) XS (2womts)YS {ezK P + S vﬂ 35

.
J

1

o

The characteristic equation of this set of equations can be approxi-

mated very closely by .the equation

K(p + k)p[%(pz + %;P + r2) B G(%?p * r2)] = 0 (3.74)

.2 2
2 r 2 2
P 4+ P+ P+ 2§Gp + 1

kv(f,le1 + 3262)

1l +

where K ﬁ 5
3G
1/2
A
wg = @ {é(lg - 11)]
I3
k /m
r 2 p_t
afe
k
k ﬁ —2
k w
v G
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(1l

W, (brey = Lyey

Ws (17,1el + 2292)

e

2

The parameter §9 has been included in Egs, 3.73 and 3.74 to
account for some rate-dependent damping of the gravity stabilized attitude
librations. This damping was not included explicitly in the original

equations because the form in which it enters the equations is so depend-

ent on mechanization,

Viewing the characteristic Eq. 3.14 as a function of two parameters,
K, and G, it is possible to sketch the loci of the roots as a function of
K while holding G constant, There are, of course, six poles for the
loci, four corresponding to the X and Y translational mode with normalized
undamped natural frequehcy of r =,/kp/mt/wg, and two corresponding to
the gravity stabilized pitch attitude with normalized natural frequency
of 1, There are five zeros for tﬁe loci, one on the negative real axis

at -k, two very near the trrnslational mode roots (the exact location

dépends on G), and two very near the origin on the real axis,

Fig. 3-23 is a plot of the roots of the system calculated directly
from Eqs. 3.73 (uot the approximate characteristic equation, Eq. 3.74)
for the parameter values indicated in the figure. Since realistic velues
of the frequency ratio r are around 100, it is necessary to show the
loci with two different scalings, a macro-view to illustrate the behavier
of the roots of the translational mode and a micro-view to observe the
behavior of the gravity stabilized roots very near the origin, For the
case illustrated (G > 0) it is seen that the loci cross the real axis
relatively quickly for values of K > O, but that for K < 0, the system
is stable until relatively large negative'values of K are reached, A
‘similar loci plot for G < O would show that the zero on the real axis
near +2 moves to the left-half plane and the loci agaiﬁ cross the

imaginary axis for relatively small values of K, this time for K < O,
To obtain an analytical relationship among the four parameters

Gli 62! 211
constructed from the approximrte characteristic equation, Eq. 3,74, and

and 22 and system stability, the Routhian array may bg

conditions for imaginary axis crossover deduced from this, This yields

the stability criterion,
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®, ¢, - 1&261) < DN (3.75)
for
I (416 = 258 “
- € € .
3(12 Il) (1&1 , * 12 2)

This relationship governs the imaginary axis crossover for the loci
originating at the gravity stabilized polestand is the primary constraint
on specification of the allowable values of pickoff null offset (e1 and 32)
and control actuator moment arms (ﬂl and zz). From Eg. 3.75 using approxi-

mate GEOS-C parameters

¢/

€ - € <
1%2 ~ 32 1) 0.125

(21, 52, el, ez in meters) for stability. This agrees very well with
values obtained from the calculations of the roots of Eq. 3,73 used in

plotting the loci of ¥rig. 3-23.

Even though one must be careful not to violate Eq, 3.75 in the vehi-
cle design, this requirement does not seem to be a difficult design con-
straint, For example, with € = + 1 cm, and 32 =+ 1 cm, we can safely
= 0,05, ' '

have /. and zz = + 1 meter for

1 gG
The question of stability in roll-yaw and the effect of non-zero

63 and £3 has yet'to be fully investigated, but considerations as above

are expected to yield similar results ; tolerances on pickoff null to

mass center and control actuator moment arm specifications which are

quite comfortable from the design point-of~view,
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APPENDIX A

The plots of this Appendix show acceleration of mean anomaly
as a function of inclination of 450 km and orbital frequency, s,

of 7 rev/day. The degree, £, ranges from 7 through 15,
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APPENDIX B

The figures presented in this Appendix are of acceleration of
mean anomaly as a function of inclination for perigee altitude of
450 kxm and s =Mm of 3 through 6 .and 8 through 12. The degree, £,

is varied from 7 through 15.
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- APPENDIX C

For this Appendix, acceleration of mean anomaly is shown for

= 14, perigee altitude of 350 km,
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APPENDIX D

/
DOCUMENTATION OF
DRAG-FREE SATELLITE FUEL COMPUTATION PROGRAM

PURPOSE

DFSFUEL is a digital program written in Fortran IV, level H, version
II, which computes the translational control propellant required for
sustaining a Drag-Free Satellite in a prescribed orbit for one year, In-
cluded in the computation are the effects of

1) atmospheric density

2) control system limit cycle

3) transient recovery from external perturbations

4) solar radiation pressure

5) vertical offset of mass center from position sensor null
/) effect of upper atmospheric winds.

PROCEDURE

The heart of the program is the dynamic, 2-degree-of-freedom atmospheric
model of Jacchia [Ref. 1] as modified by Keating and Pricr [Ref. 2] for asym-
etry of the diurnal bulge. For computational reasons, it has been found con-
venient to use the 2-degree-of-freedom polynomial fit of this model given by
Sorenson [Ref, 3] rather than use the original equations of Jacchia which re-
quire an integration, The polynomial agrees with the model to at least 3
places so it is adequate for present purposes., The program steps the satel-
lite around in the given orbit calculating density at each step and numerically
integrating the drag to get the total drag impulse for the orbit. To this is
added "worst-case" impulses for limit cycle, solar radiation pressure, transient
recovery, and vertical bias in pickoff null.

To account for the possibility that satellite surface forces need not be
aligned with the control thrustors, a factor of 3 1s used in the impulse
computation, A further factor of conservatism is provided for in a special
factor called SAFTY by which the total impulse is multlplled before computing
the propellant mass.

VARIABLES
Listed only will be the variables which can be controlled by input. Most

of them have default values assigned internally if they are not overridden by
input specification,
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INC
INCO
INCI
INCF
EP
EPO
FPI
EPF
HP
HPO
HPI
HPF

sO
SI
SF
Isp

CDh
MASS
AOM
DB
DVMIN
VOFF

DIST
NUMDIST
RSTIM
OMG
W
CWIND

BLGO
FIO

FICB
AP

Appendix D

orbit inclination in degrees (no default)
initial orbit inclination .

in cases where several
orbit inclination increment different inclinations
final orbit inclination are to be examined.
orbit eccentricity (no default)

initial eccentricity ,
in cases where several

eccentricity'increment different eccentricities

final eccentricity are to be examined.

perigee altitude in km (no default)
initial : i
initial perigee altitude in cases where several
perigee increment different perigee altitudes
final perigee altitude are to be examined.

qrbital frequency in reVS/day (no default)

. . it

initial orbital frequency in cases where several
orbital frequency increment orbital frequencies are
final orbital frequency to be examined.

effective Igp of the propellant in sec (default value = 30
for nitrogen plus tanks).

satellite drag coefficient (default value = 2.2)

satellite mass in kg (default value = 86.5)

satellite area to mass ratio in.m2/kg (default value ='1.2\72)
controller deadband in m (default value = 1,5\ 3)

thrustor minimum velocity change in m/sec (default = h.h\76)

vertical offset from pickoff null to mass center in m (default
value = 1,\°2 '

magnitude of impulsive transient disturbances in m (default = 2\73)
number of transient disturbances (default value = 1.d\y)

time to damp transient disturbance in sec (default value = 30.)
satellite orbit right ascension in degrees (default value = -h.6)
orbit argument of perigee in deg (default value = 270.)

ratio of rotational rate of upper atmosphere to earth's rotational
rate (default value = 1,3)

angle between Greenwich and Equinox at time O in deg (default

value = O)

index of solar decimetric flux in units of 10-22

width (default value = 175)
monthly average of F10 (default value = 175)

index of magnetic activity in units of é\f5 gauss (default value
= 10,)

watts/mz/cps band-
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Appendix D

DAY day of the year (default value = 170.)

DF increment in true anomaly to be used in impulse computation in deg
(default = 5)

SAFTY factor of conservatism used in obtalnlng total impulse (default
value = 1,2)

PRINT)These variables were included to give the option of plotting.
PLOT (However, plot routines are not yet included so these variables
should not be changed from their default values,

PROGRAM INPUT

In general, the order and quantity of input data is arbitrary for any
combination of the variables listed above. Any variable which is not explicitly
given a value by input will be assigned its default value. To input a value

‘t‘or a particular variable, the name of the variable is placed on the card (or

ard 1mage) left justified to column 1 and the value is placed anywhere in

columns 9 thru 20 as an E or F format number with explicit decimal point,
Thus, there is always one variable name and value per card except when inputting
a range of values for eccentricity, perigee altitude, orbital frequency,; or
inclination. In these cases, the name of the variable representing the initial
value is placed on the card left justified to column 1, its corresponding value
in E or ¥ format in columns 9 thru 20, and the increment and final values in
columns 29 thru 40, and 49 thru 60 respectively,

The sei of variabies (HP, EP, S) is redundant in thai ary one of them
may be calculated from the other two, values must always be input for any two--
and only two--of them., This gives some flexibility in specifying the orbital
parameters. (See samples on page 185 and 186.) .

OUTPUT

'The output generated by DFSFUEL is generally self-explanatory, The
only part which requires interpretation is the table labeled '"default
overrides.," The order of the variables listed in this table is

INC EP HP S INCO INCI  INCF EPO
EPI EPF  HPO  HPI  HPF SO SI  SF
ISP CcD MASS AOM DB DVMIN VOFF  DIST

NUMDIST RSTIM  OMG W  BLGO CWIND  DF DAY
FIO FIOB AP PRINT PLOT  SAFTY
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Whenever one of these variables has been specified as input, the value

will be shown explicitly in the table, otherwise the default value was
used and the symbol *%% e will be shown in the table,

A sample output is included here to illustrate the result of running

the sample input shown previously,

REFERENCES
- Jacchia, L.G., "Static Diffusion Models of the Upper Atmosphere With
Emperical Temperature Profiles,'" Smithsonian Contributions to Astro-

physics, vol, 8, no, 9, Smithsonian Institution Astrophysical Ob-
servatory, Washington, D,.C,, 1965,

Keating, C.M., and Prior, E,J.,, '"Latitude and Seasonal Variations
in Atmospheric Densities Obtained During Low Solar Activity by Means
of the Inflatable Air Densify Satellite," Space Research VII,

vol, 2, North Holland Publishing Co., Amsterdam, 1967,

Sorensen, J.,A,, Ph,D Dissertation, Dept, of Aeronautics and Astrgnautics,

SUDAAR 380, to be published,
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45,000000
sesesecRcIs R
LRI I LTRSS 2
UEEBECABE RN LS

200.000000

SAMPLE OUTPUT

PROLELLAMT S QUIRFD FUR DRAG FI'EE SATcLLITE OPERATION FUR DNE YEAR .

0.100090
[T TTTER 2R S 1]
CONSETANERBOL
seesseraernse

S s2SRREDEY

SULAR RADIATION

INCLINATION =

235,966

ECCENTRICITY = 0.10000

PERIGEE ALT (xX#)

300.000
350.000
400,000
450,000
500.000/
550,600

600,006

REVS/DAY

45.00 DEG

scePBENRERREES
309.000000
100.000000
19.000000

*BEEACERCEE D

EIXED WORST CASE IMPULSES (N.SEC)

13.40¢

13,453

13,304

13.158

"13.014

12,674

CM OFFSEY

OEFAULT VAR[ABLE

ceeteersatses

50.000000
SEEGOORTEN SR
CREEERASRERNE

CSESBRE S KOS R ML

OVERRIDES

seoteenssce sy

800.,000000
S2CAENRE0E ST
*0COPsEOSEEOE

LI 22222 2 18 2°3

LIMIT CYCLE

15.263

SEEELECEOS0S

SEBEPCETEOES S

CEEOIRCESOEE L

SYERLESEE0OCES

LSEE O EBESOO L

Fe0C0 000006
CEEEPREBOI0 6D
(3221 J 41 1222 1]

essoeGabose DT

66,667

CEEELIROEGICS

SE0ESETO O S

8080 S ERE0S

EEOFCEEEGSE00

TRANSIENF RESPONSE

IMP (N.SEC) DRAG 1MP (N.SEC) TOTAL IHP (N.SEC) MASS OF PROP ¢ TARKS (KG)

81.132
604,364
59,037
s7.748
S6.4906

3%
_ sa.100

AT

15216, 930
8361236
2817167
1338.326
6564115

... 316,130

176

' 155964550

6739.488

3194.099

1710.9%8

1036.507
709,307

$49. 640

63.659

27.3%08

13.037
6.924
4,206
2,899
2,243



#50.000
700,000
750.000
RU0.000

COMPILE YI1ME=
$STOP

$S¥0P

12.600
12,406
12.335
12,206

2.58 SLCLEXECUTIUN TIuE=

-

52.952
51,837
50,752

49,698

6097 SEC,OBJECT COOE=

97.441
554512
33.033
204511

177

21,

521.

468,330
4254245
401.681

388,106

18896 BYTES, ARRAY AREA=

1.912
1.736
1.640

1.584

546 BYTESsUNUSED=

230560 BYTES
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48,
49,
50.
Sle
52.
53.
54,
55,
56
57,
S8,
59.
50,

7/70FSDRAG JOB (J363,414,1,2)4%A FLENING?yNSGLEVELSL

/7JOBLIB LD DSNAHE=SYS2.PROGLIB,OISPo(OLDPASS)

//XENT EXEC WATFOR

/7/60.SYSIN 00 o

SWATFOR ’
REAL®S VAR(30}/*INC ¢y 'HP
L '4*EPO Yo *HPO Syt ISP
2 "otA0H ‘s'08 . Yg'WOFF
3 *,°ASTIR Yo '0H6 "0y *BLGO
4 YetDAV Ce'F10 f' ’AP

5 .'SAFYV .y
REALeD RlOl.RLOS.RLO?.DEFLVI.DEFLTZ.DEFLYB
REALOS DEXP,OLOGHRLOLZ

0408

et INCO
1,1CD 0, HASS
¢, DISY S o 'NUDLS
¢t CUIRD Sy 0DF

o9M0 PRINT o *PLOT

REALeS RLOBcRtUéeRLU%qRLO7oRL089RLOlOcTN?\RLOcLﬁotﬂﬂl
REALSD CUTDUE33)/369140067

REAL lSPpﬂASS'“ﬁﬁﬁlS-!ﬁtﬂolﬁtileuFoKﬂADpiﬂFthIRPVQO

1ERPSOL o INC o INCD 155PDG o e LENG PASTOT INPTOT INFCRO

INTEGER PRINT,PLOT UPDN

C
C  INEVIALYZE SATELLITE PARAMETERS VO DEFAULT VALUES
c

ISP ©» 30.0

€O » 2.2

HASS = 86.5
AGH = ]1,2E-2
3, = 0.0015
OVHIN = A 4E-6
VOFF o 0,01
DIST = 2.0E-3
RUMDIS = 1,0E6
RESTIH = 30.0

et ]

[ 20 préagarst

.o

NITEAILT SATLR

o0n

ONG = ~4,8
¥ = 270,
CWIND s 1,3
BLGO = 0.0
Fl10 = 173,
Of = 5.0
F108= 175,
DAY =« 170,
AP = 10.
PRINT = 2
PLOT o | P
SAFTY = 1,2
KOPY @ O

LoAMATRAE YO SERAMB P wALyne

et evewws e

¢ .
€ START MAIN PROGRAM BY READING IN ANY DEFAULY OVERIDES
C

1 READ (5,1000ENDe2)
100 FORMAY (3(484+G12))
DO 3 J=1,30

DEFLY1¢DUML 4DEFLT24DUN24DEFLTI, DUKS

IF (DEFLT] .EQs VAR(JI) GO TO (495¢60T18¢9¢10011¢12913014415
1 51691 701841942042192290239024425426427:28929030931432¢33)44

3 CONTINUE
GO T0 1

4 INCO = DuMl
INCF = DUML +0,01
INCE = 1,
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ol.
62,
nl,
64,
6%,
o6,
ht,
6a,
6HY,
m,
11.
72,
3.
e,
15,
16,
1.
Ta,
79,
811,
4l.
B2.
r3,
R&,
45,
96,
37,
88,
89,
S0,
a1,
92,
93,
s,
5.
94,
97,
4,
M,
106,
191.
162,
103,
114,
195,
19¢,
177,
101,
194,
1,
111.
112,
113,
114,
115,
Wi,
11,
tis,
t19,
120.
121.

t?

13

autouetl) = 1600
[T IR T8 ]

tPY = DuMl

tPF s DUM] ¢ 0,01
el = Lt

KOPT = KUPT ¢ |
AWITHUKI2) = EPO
[N LN |

WPy = DY)

HPF = Judl ¢ 1,
KPl s 100,

KOPT = KUPT ¢ 2
QUTDYMLIY = HPD
GG 1101

S2 = DUM}

SF = DUML ¢ 9,1
St = 1.0

KOPT = XOPT ¢ 3
NUTNUM{&) = S0
G0 1O 1

1NCO = DuML

INCT = DUM2

INCF = DUMY
OUTNUY(S) = INCO
QUTDUMIE) = INCY
OQUTNUM(T?) s INCF
[ro B SO I )

EPN a DUv)

EPL = DUM2

EPF 2 DUMY

KNPT = XUPY + 1
NUIDYY{H} = EPO
Qutputie) = vl
OUTHYMLEOY = EPF
Gn 10 1

HPO 2 DUML

HPY a JDu9?

HPF = DUM3

MOPY ~ KOPT » 2
OUTRUMILL) = HPO
NUTVUM(1Z2) = HPT
QUYDUMLLIY) = HPF
GU 17 1

SO = Jyvl

SI = puv2

SF = DUM3

KOPT = KOPT ¢ 3
NUTDU%(14) = 50
OuTHUM(ES) = SI
QUTDYM{Ll6) = SF
GH 1n 1

159 = DUM])
QUYDUMELT) = I5P
Gn 0 1

CO = DY
2JT0u418) a (D
6o IN g

MASS = DUNL
CUTDUMIL9) = MASS
G 101

LU UL |
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122, DUTNURL Y)Y & ANM

123, 6N 10t
| RL N to vt = DuM!

125, GUINUNE21LY = DB

1268, Gy I}

127, 17 DVA{N a DUM]

123, - CUTHUNML22) = DVMIN . .
129 G 10 1

12, 1R VOFF = pUML

1 I OQUTLUMI(23) = VOFF

132, GU 10 1

133, 19 01ST = purl

13, oUTDUMIZ24) = DIST

135, GO Tu 1

Lin, 23 NUMDILS = DUM)

137. OUTDUNI25) = NUMDIS

[ RETS GuU 10 |}

1V, 2) RSTIM = puUM)

12, CUTDUN{256) = RSTIM .
14t 69 101

142, 2?2 045 = DuMl

143, QUTINUNL2T) = CMG

let, 6N 10 1

145, 23 w = DUMY

14h, OUTDUNL23) = W

1ol GO 131

| EW 24 BIGH = DuMl

| EUN OUTDHUME29) = RLGO

ted. Cu TO 1

151, 2% CwikD = DuMl

152. JUTLUN(IN) = (WIND
153, 6J 101

15, 26 uUF = DUM)

155, | OUTDUN(31) = DF

155, GO 10 1

157. 27 LAY = pyuMl

154, QUTNJIY(3Z2) = DAY

159, 6N 10}

153, 23 F10 s Duwy

inl. NYTINDUMEIS) = FL0

YN GU 1N |

tald, 29 F10R = DUM] -

1as, APUTDUMEISL) = F104

1es, [N EY |

104, Woar = v

trt. fIUTOU™{35) = Ap

[ L LR R L

1a9, M PRINT = )

11, MYTeUY i) = et
171, 1Y

| N 122 PLTT = 2

17, MTUIVERT) =2 PLOT

174 [TRAE]

s, Y3 GAHTY = OuM)

[ LN CUTOUMEAR) s SARTY
101, [N BRI §

L1y PARNLAS § S N T

e, IF tPa T 02, 1) &t 'Y o7
e, aR1TF qe i) .
it 120 BO2VAT (010,700, 2 PHLLANT REJUIPEU FOR NRAS Fatk SATELLITE OPce

1-7. Vo ® 2NN F o o5 F2 N\ /77 IIT7733% 4L THAULT VAKIAALF OVERRIDES®)
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183, WRITEL (6,102) 1OUTOUNIT) o1e],38)

196, 102 FORMAT (/7719 ¢,8(2X,F13.60/))
IEEN AT CUNTINUE
A6, c
187, C ASSIGN FIXED CONSTANTS ANO PERFORM DEGREES YO RADJIANS CONVERSION
138, [4
[LLN WE = 0.7292E~-4
ran, TP = 0.0 ,
191, FO = 0.0 !
1924 . GME = 3.9858E5
193, RE = 6371.
196, FSTOP = 360.0
195, 0 = 0.0
194, DAYP = &,
127, ASY = 1.496F28
t9s, SUINC = 23,45
199, WSU = =77,59749
200. KOPT = KOPY - 2
2Qt. IF (KOPT .EQ. 2} GO 7O 8O
282, RPF = HPF ¢ RF
293, RPO = HPD + RE
204, RPI = MP{
205, RO CONTINUE
206, . SECPY = 3565.%24,.%60.%60,
201, KRAD =,8
2na, SIMI = SQRT(3.0)
209, DTR =21./57.29578
210, RYD = 57,29578
P38 INCO = DTR®INCO
212. INCE = DTR2INCH B
21, fHCF = DTREINCF
214, OMG =DTRSOMG
215, W o= DIREA
216. BLGO = DTR*8LGO
217, . FO = DTReFN
218, FSTOP = DYPSFSTOP
219, Pl = A, 1415927
220 TPL = Z.ePi
221, KEVCCN = A0.%60.924./TP1
222, €1 = CUSICMG)
228, SO = SIN(3MG)
224, PUY = PL/2,
LN TPUT = 3_6puT
A, aF =2 ITReYF
s, < .
he TN L PETL4MING SUME TEMPERATURE PARAMETERS
s, <
Pk I TED = 414, #3,60F108 ¢1.8¢{FLO0-F108)¢{0,3740.148SIN(TPI&(DAY~15].
ALY N L 177691 1€F1uasSINI2 . eTP{®{UAY-55,}/365.}
243, R¥4LE = 45, 8T
AR Kl T 12.00F0
tie, AU 2z AP #liv.vile ~EAPI-G, 058800
llv‘" L
BN O LuMP e FULL $MPULSE FOP LIMIT CYCLEs TRANSIENT RECAVERY, AND
vl 4 3L DU, TASSIMENG ATNST CASE CONDITIOUNS)
i

LE Y UV S YRR A S

110 = s evASServMIMesr(PY/TAULC

T¥21% = alSTeLUVIISAMASS/KEST N

142600 = SJrisvASSOA; 964 ,5C-60SECPYEXRAD
Tet, T ID2157 i g0 1) LY Tor 42
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123

(3]

WRITE (6,103) IXPSOL, IMPLC,IMPTR

FORMAY U/ /7/766X,*FIXED WORSY CASL IRPULSES (N SECH'//713X.*SOLAR RA
IDTATION® 27X, LMY CYCLED 25K, *TRANSIENT RESPONSE*Z/ M ISXsF10.3¢
2157))

CUMYINUE

C
€ DETERMINATION OF SUN POSITION

[<

[aXaBalal

41

FPSU = 1.,672592€~02

WSU = OTRaWSU

SUINC = DYR® SUINC

OFSU = 0.9856091eDTR

SUM = JFSUS{ODAY-DAYP) .
ESU 2 SuM

NV el 1=1,5

ESU = SUM o EPSUSSINIESUY

CES = COS (ESVY

CF3S = (CES - EPSUI/(1. - EPSUOCES)

SFS 3 (SIN(ESUIOSQRT(1.-EPSUCEPSUII/{1.~EPSUPCES)
S5 = SIN(WSU)

€4S = LOS{USY)

SUS s SHS#(FS ¢ CHWSOSFS

CUS = CWS®CF3 ~ SHSeSFS

SULM = ARSIN{SUSeSIN(SUINC))
SUBL s ARCUSELUS/CIASISULY))
IF (SUSLT,0.01 Su4L = TPI - SUBL

INTTIALI2E THE PARTLY OF ORBITS TD BE INVESTIGATED.COMPUTE ORBITAL
PARAMETERS ) AND THEN INCREXENY THROUGH THE FANILY

He
52

6s
174
%9

53
54

1°s

07

Al

55

56
57

174

19 = ENCO0- LNCH

INC = INC & INCI

1F (INC.GTLINCF) G0 TN 1000

1F (PRINT L[Q. 1) GO TN 69

INCD s RYD®INC

WRITE (64,106) INCD

FNAMAT (/777710 INCLINATION » ¢,FT7.,2,* DEG*)

CONTINUL

O T (53,56,59) HXPY

£EP = FP) - (P]

FP a2 €p ¢ ¢P|

IF (EPLGT.FPF} GU T $2

IF (PRINT okd. 13 60 I0 70

WRITE {4,105) €9

FORMAT (277 TK "¢ CCENT2ICITY 5 ,F 1,5)

A?1TE {64107)

FIIPMAT (/77 2X,*PERIGEF ALT [KM)*, BX,CREVS/OAYY, SKe*CH GFFSET (W
18 (N,SECIY, IR, "UPAG IMP (NJSECI®, IXo'TOTAL IHP (N SECH', 1X,°4aS
25 N PIOP & TANKS (XGHU//)

COMTINJE

RP = uPD - RP]

2P = RP e PPL

1 (RP.GT.PPF) GO TN 54

S = REVCUMSSRRTIGMEZLOP/ (L, - EP))E®I)

6 17 62
§ = 50 - St
S =5 ¢ 5l

1€ (S.5T.SF) 6C 10 <2

TF (PRINT okde 1) G TT 7

WRITE (o,106) S

FIRUAT (77776, 128 VILUTLIONS PER DAY 5 *¢F7.3)
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0%,
3066
Nr.
306,
30%.
310,
M.

- 312.

3.
314,
315.
316,
nt.
318.
319,
320.

T 321,

322,
323.
32,
325,
326,
327.
3238,
329,
330,
331.
332,
333,
334,
335.
336,
337,
338,
339,
340.
351,
3624
343,
344,
345,

47,
346.
349,
150,
351,
352.
353,
384,
395,
15¢.
357,
338,
359,

‘369,

I6l.
352.
LTL M
164,
I55,

[aNaNaRe

108

n

L 1]

59

60

toe

T2
61

62

63

¥RITE 164108} .

FORMATY (/77 2XoYECCENTRICITY®, 8X,% PER ALT (KM)®, SKo*CM OFFSE®,*
IV IRP EM.SECI®y 1Xo*ORAG IHP (N.SEC)®y LXo'TITAL [MP (N.SEC)', LXs
2°RASS OF PROP o TANKS (KGI*//1%

CONT IRUE

EP @ EPO ~ EPL

EP © EP ¢ EPI

IF (EP.GT.EPF) 60 TO 57

RP = {l.~EP)*(GHESREVCONS®2/5002)08(]1,/3,)

G0 10 62 .

$ » S0 ~ S1

§ =S e 8!

LF (S.GT.SF} GO TO 52

IF {PRINT .EQ. 1) GO YO 72
HRITE (64106} S )

HRITE (64109} X

FORHAY (/77 2Xo*PER ALY (KRI®, BX *ECCENTRICITY', 5K, *CH OFFSET IN
1P (HeSECD®y 1Xe°DRAG IMP (NJSECH'1Xe*TOTAL IRP (N,SEC)'y 1X,*MASS

2 OF PRUP & TARKS (KG)*//)}

CONTINUE

RP = RPO = RPI

RP = RP & RPL

IF (RP.GT.RPF) GO TO 60 .
EP = 1, =~ RPB(S6#2/(GAECREVCONS®2))¢0(1,/3.)
CONTINUE

A= RP/{1. ~ EP)

HP = RP -~ RE

ORF = SQRTIGHRE/AS*3}

00A = 1./A

PER = TPI/ORF

CONTIRUE

SINC = SENCINC)

CINC = COSUIKRC)

SOCINC = SO®CINC

COCINC = COSCINC

THIS SECTION UPDATES THE ORBITAL POSITION OF THE SATELLITE

40

38

USING A CENTRAL FORCE FIELD NODEL.

F2 = FO - DF

1 = Y70

IMPDG = O,

F2 = F2 ¢ OF .

F = F2

IF (F.GT.TPI) F = F =~ TPI
COSF = COS(F) .
CE = (EP ¢+ COSF1/(1. ¢EPSCOSF)
€ » ARCOS({CE)

IF (F.GT.PI}) £ = TPl - E

M s F - FPeSYINIF)

T = TP ¢ N/ORF

IF (F2,61.7P1) T = ¥ & PER
SINF o SIM{F)

R = Ae(]), - EPOCE)

V = SQRT(GMES({2./P - QODA}}
OUH = 1./SQRY(1l. #2.¢CPCCOSF ¢ EPSEP)
SG = EPOSINFepUM

CG = (1., #EPOCOSFISDUM
YUsudeF

IF (U GT.TPE Y. U = U ~ TP]
SuU = SiN(U)
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O™

78
7

-

34
19

DE

81
110

42

tu = COsS{U)
CL = SQRTIL. =~ {SUSSINCI®B2)

IF(ABSLING = SOT§.LY.0.000L) 60 ¥Q 77

1FIULLELPT ) GO TO T2

BLAM & ONG oTPI - ARCOSICU/CL

60 10 19

BLLK = OMG ¢ ARCOSICU/CL)

60 10 79

1FLULLEPOT) GO T0 34

1F(U.GT.YPOT) GO TO 34

OLAK = Q4G © Pl

60 10 79

BLAM = (MG

TFUBLAMCGT.TPL) BLAN = BLAY = TPL

VSG = VeSG

¥CG = VeCG

XID = (CO9CY - SNCINCESUISVSG -(COOSY ¢ SOLINCOCUISYCG
YID = {508CY +COCINCOSUISYSG ~1S00SU ~COCINCCUIOVEE
21D = SINCESUVSG ¢ SINCSCUSVCE

VW = CWINDONESROCL

SBL =SIN(BLAM)

cBL = COS{BLAMI

XRD = X[D ¢VW#SBL

YRD = YID - VWeCBL

2RD = 21D

SL = SUPSING

LAM = ARSIN(SL) :

TERMINE ATMOSPHERIC DENSITY VIA SORENSEN POLYNOMIAL
FIT T0 JACLHIA TWO PARAMETER MCOEL

ETT = 0,5¢ABS{LAM-SULM)

THY =C.5#ARSELAMe SULM)

HA =BLAM - SUBL .

TASU = HA ~RK&S ¢RK12¢SINCHA+RK4S5}

1IF (TASU.LT.-PI) TASYU =TASU+TPL

{F {TASU.GT.PI) TASU = TASU-TPI

JIFP =TENe{l, +0,23¢SIN{ETT) +0,280{COSITHT)-SINCETT})*(COS(0.5¢
1 TASU))=®2,5) .
TIF = YIFP ¢ APK

FX = (TIF=-800,)/1750.4(1,722E~04) *(TIF-800.)9¢2)
FS = J.0291%EXP(-FXeFX/2.) -
HE = R - RE/SQRT(1.+(6.7385E-03)eSLe5L)

TMP =TIF-(TIF~355.}¢EXP(-FS*{HE-120.)})

KR = |

IF (HE.LT 120.} GO TN} 81

1F (HELLT.200.) GO TN 42

IF (HE.LTL30D0,) GO T 43

IF (b1 T .800.i 67 70 54

IF (HELLT 500,00 GO Ty 45

IF (HELLT.000.) GO TN &6

IF {HELLT.T00.} GO TO &7

1¥ (HF.LT.HD0.) GO TD 48

1F IMELLT.900.) GH TD 49

61 10 80

WRITE (6., 110) HE

FUTHMAT (X, *HETGMT =0 F7.1,%1S QUT OF RANGE'?

GU TN 7Y

RLD12 = ~11.0ALUG(Z.461)

HED = 120,

KRiY = 2 -
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427,
L2%e
424
&30,
431,
4324
433,
434,
43%,
436,
437,
438,
439,
440,
441,
442,
443,
YT
445,
446,
44l,
448,
449,
450,
45%.
452.
651,
“54,
455,
456,
457,
458,
459,
460,
461,
462,
“b3.
LY
465,
4664
467,
. 468,
4ha,
470,
471,
412,
473
474,
“75.
476
477,
478,
«79,
480,
4fte
482,
4A3.
484,
495,
486,
487,

RLO = RLO1201.25
3 RLN2 = ~D0.3056057D¢02 +THPEL0,2914T&SD=02¢THP 0 {~0,1072323D-05
1 40.33342090~11¢TMP))
IF (KRN.EQ.21 RH] = PLO201,25
IF (XRN,EQ.2} GO TO S1
HAD = 200,
KRD = 2
RLO = RLO2
&4 RLN3 = ~0,38173060602 +THP®(0.120189T0-01¢THP#¢{-0,63458190-05
1 +0.1150696D-0RTHP )}
IF (KROLEQ.2) RHI = ALO3
.+ IF (KRO.EQ.2} GD TO S1
HLO =300,
KRD = 2
RLO = RLU3
45 RLD4 = -0.41947930802+THPEL0. 1443336001+ THPE (-0, 70408650~05
1 ¢0,12043880-088THP})
IF (KRO.EQ.2) RHI =PLO4
If (KRO.£Q.2} GO TO 51
HLD =400,
KRO = 2 .
RLO =RLO%
46 RLOS = =~0.45682130+02 ¢THPE(0.175230010-010THP #(~0,83043900-05
1 +0.13963050-08¢T4P)) J
IF (KRO.EQ.2} RHI =RLUS
IF (KRO.EQ.2) GU TU SI

HLD = 500.
KRQ = 2
RLO = RLOS

47 RLD6 = ~0,49373530D+02¢THP*(0,2030690D0-01¢THPR(~0.94092410-05
I ¢0.15592820-08%TMPI}
IF (KROLEQ.2} RHI =PLO6
IF IKRO.EQ.2) GU TO 51
KLD =600,
KR = 2
RLO = RLUS
48 RLOT = ~0.50892830¢02 +TMP#{0,2047103D-0]1 «TMP(-0.89800820-0%
1 +0,14249710~08%1MP})
IF (KRiJ.EJ.2) 26 =RLOT
IF {KR1O.EQ.2) GD YO 51
KLO =700.
KR} = 2
RLO = RLO7
49 RLNB = -0.496873AN+02 +TMP2(0.15525T20-01 +TRPL(~0.56217010-05
1 #0.73357390-09214P)) 5
IF (KRO,EQ.2) RHI zRLUA
IF (KRQ.EQ.2) GU TD 51
HLN =800,
KRi} = 2
RL] =RLO8
50 RLIY & -0,4595353D002 +T8PG(0.67329910-02+TMP#(~0.26290550~06
1 ~0.30583030-092TMP}}
1F (KRD.EQ.2) RMI rRLO9
If (KRND.EQ.2) GO TO 51
HLD = 900.
RLO = RLU9
RLAIO® -0,42505970¢02 ¢THPH(-0,50264030-03¢TMP*((0.37461300-0%
1 ~0.10186550~08%TMP))
RHI =RL010
51 LRO = RLO #{HE-HLU)®{RHI-RLO)*0,01
RMN ®DEXP{LRO)®1,0EY

186



494,
4849,
90,
“q4,
492,
493,
4%,
495,
4G5,
4937,
“Yyd,
499,
500,

11 Y

5C2,
513,
504,
5085,
506,
507,
S0H,
509,
510,
511,
5124
513,
Sla,
515,
516,
517.
518,
519,
420,
521,
522,

[4
€ CuaPUTE ATROSPHERIC DRAG [HPLLSE
c

39

74
11

75

16
13

1000

$DATA
INC

1iPO
MASS
251}
Fin
$STOD
/e

OELY = T -« T}

VHAGS = (XPDOS2 ¢ YRDSS2 o IRDS92)61,E6

IMPDG » 0.5SRHOSACKH®MASSEVHAGSSCOYDELTOSQRS ¢ INPDG
Vst )

IF (F2.LT.FSTLP) GO 1O 38

INPUG = [MPDGRSPISES,

VACC = 2.%(GME/(A9®3} ) $VOFF

[HPCHO = MASSOSECPYOVACC

INPTOT = [MPOG + IMPLC + IMPTR #1MPSOL ¢ IMPCMO
MASTOT o [MPTUTESAFTY/(9.861SP)

IF (PRINT ,£2, 1) GN TO 73

GO0 TU {T4,75,T6),XNPT

MRETE (6,111) HPy5,18PCHG, INPDGy 1 HPTOT,HASTOT
FORMAT {1 ¢,6(5X,F9,3,4X17) .

6o 10 73 .

WRITE (64111) EP,HP, MPCHO, MPOG, IMPTOT ,MASTOT
G0 TN 713

MRITE (60111} HPo£P o[ 4PCMO, INPDG, IMPTOT MASTOT
CONTINUE

GO TO (55,58,61) ,KOPT

CONTINUE

RETURN .
END

45.
0.1 .
300. 50. 8Qo,
100,
10.
200,
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